File size: 2,255 Bytes
172478a
 
 
 
daebeb4
172478a
 
 
 
 
 
 
 
 
 
 
 
 
9f9c5aa
172478a
 
 
 
 
 
 
 
 
9f9c5aa
 
 
 
 
 
172478a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f9c5aa
172478a
 
 
9f9c5aa
 
 
 
 
 
 
 
172478a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
tags:
- generated_from_trainer
- summarization
datasets:
- null
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-amazon-en-es
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    metrics:
    - name: Rouge1
      type: rouge
      value: 10.8752
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-small-finetuned-amazon-en-es

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1491
- Rouge1: 10.8752
- Rouge2: 3.8695
- Rougel: 10.6991
- Rougelsum: 10.6616
- Gen Len: 5.6085

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 9.1733        | 1.0   | 2202  | 3.4863          | 6.3629  | 1.4637 | 6.2501  | 6.2752    | 3.3302  |
| 4.4547        | 2.0   | 4404  | 3.2809          | 9.1283  | 2.992  | 8.9851  | 9.0487    | 4.7642  |
| 4.0581        | 3.0   | 6606  | 3.2108          | 10.5207 | 3.7411 | 10.2595 | 10.234    | 5.3208  |
| 3.8821        | 4.0   | 8808  | 3.1701          | 10.8636 | 4.0944 | 10.6462 | 10.6468   | 5.2453  |
| 3.7857        | 5.0   | 11010 | 3.1600          | 10.9456 | 4.5187 | 10.784  | 10.7542   | 5.691   |
| 3.7273        | 6.0   | 13212 | 3.1491          | 10.8752 | 3.8695 | 10.6991 | 10.6616   | 5.6085  |


### Framework versions

- Transformers 4.10.3
- Pytorch 1.9.1+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3