File size: 2,277 Bytes
7b0b58e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: cc-by-nc-4.0
datasets:
- argilla/dpo-mix-7k
- nvidia/HelpSteer
- jondurbin/airoboros-3.2
- hkust-nlp/deita-10k-v0
- LDJnr/Capybara
- HPAI-BSC/CareQA
- GBaker/MedQA-USMLE-4-options
- lukaemon/mmlu
- bigbio/pubmed_qa
- openlifescienceai/medmcqa
- bigbio/med_qa
- HPAI-BSC/better-safe-than-sorry
- HPAI-BSC/pubmedqa-cot
- HPAI-BSC/medmcqa-cot
- HPAI-BSC/medqa-cot
language:
- en
library_name: transformers
tags:
- biology
- medical
- llama-cpp
- gguf-my-repo
pipeline_tag: question-answering
base_model: HPAI-BSC/Llama3-Aloe-8B-Alpha
---

# huggingfacepremium/Llama3-Aloe-8B-Alpha-Q4_0-GGUF
This model was converted to GGUF format from [`HPAI-BSC/Llama3-Aloe-8B-Alpha`](https://huggingface.co/HPAI-BSC/Llama3-Aloe-8B-Alpha) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/HPAI-BSC/Llama3-Aloe-8B-Alpha) for more details on the model.

## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo huggingfacepremium/Llama3-Aloe-8B-Alpha-Q4_0-GGUF --hf-file llama3-aloe-8b-alpha-q4_0.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo huggingfacepremium/Llama3-Aloe-8B-Alpha-Q4_0-GGUF --hf-file llama3-aloe-8b-alpha-q4_0.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo huggingfacepremium/Llama3-Aloe-8B-Alpha-Q4_0-GGUF --hf-file llama3-aloe-8b-alpha-q4_0.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo huggingfacepremium/Llama3-Aloe-8B-Alpha-Q4_0-GGUF --hf-file llama3-aloe-8b-alpha-q4_0.gguf -c 2048
```