--- base_model: SpectreLynx/Ryeta-0 library_name: transformers tags: - medical - llama-cpp - gguf-my-repo license: other datasets: - mlabonne/orpo-dpo-mix-40k - Open-Orca/SlimOrca-Dedup - jondurbin/airoboros-3.2 - microsoft/orca-math-word-problems-200k - m-a-p/Code-Feedback - MaziyarPanahi/WizardLM_evol_instruct_V2_196k - ruslanmv/ai-medical-chatbot language: - en model-index: - name: Ryeta-0 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 59.13 name: normalized accuracy - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 82.9 name: normalized accuracy - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 60.35 name: accuracy - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 49.65 - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.93 name: accuracy - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 60.35 name: accuracy --- # huggingfacepremium/Ryeta-0-Q4_K_M-GGUF This model was converted to GGUF format from [`SpectreLynx/Ryeta-0`](https://huggingface.co/SpectreLynx/Ryeta-0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/SpectreLynx/Ryeta-0) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo huggingfacepremium/Ryeta-0-Q4_K_M-GGUF --hf-file ryeta-0-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo huggingfacepremium/Ryeta-0-Q4_K_M-GGUF --hf-file ryeta-0-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo huggingfacepremium/Ryeta-0-Q4_K_M-GGUF --hf-file ryeta-0-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo huggingfacepremium/Ryeta-0-Q4_K_M-GGUF --hf-file ryeta-0-q4_k_m.gguf -c 2048 ```