File size: 4,248 Bytes
cb79a3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---

<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css">

<style>
@media (prefers-color-scheme: dark) {
  .prose { color: #E2E8F0 !important; }
  .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>

<section class='prose'>

<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/664614733476175873/Mk9AdCB3_400x400.png')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Rodrigo Ricárdez 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@_rdo bot</div>
</div>

I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).

Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!

## How does it work?

The model uses the following pipeline.

![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true)

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).

## Training data

The model was trained on [@_rdo's tweets](https://twitter.com/_rdo).

<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3176</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>1144</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>310</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1722</td>
</tr>
</tbody>
</table>

[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1raumdp7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.

## Training procedure

The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @_rdo's tweets.

Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2pxbgnfy) for full transparency and reproducibility.

At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2pxbgnfy/artifacts) is logged and versioned.

## Intended uses & limitations

### How to use

You can use this model directly with a pipeline for text generation:

<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
                     model=<span style="color:#FF9800">'huggingtweets/_rdo'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>


### Limitations and bias

The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).

In addition, the data present in the user's tweets further affects the text generated by the model.

## About

*Built by Boris Dayma*

</section>

[![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma)

<section class='prose'>
For more details, visit the project repository.
</section>

[![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)

<!--- random size file                                                                                        -->