File size: 2,814 Bytes
bf2d260
 
18a9dfa
bf2d260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
language: en
thumbnail: https://www.huggingtweets.com/jeffdeecee/1616649023498/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---

<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/946265213795426304/WwqX2wdC_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Jeff 🤖 AI Bot </div>
<div style="font-size: 15px">@jeffdeecee bot</div>
</div>

I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).

Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!

## How does it work?

The model uses the following pipeline.

![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true)

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).

## Training data

The model was trained on [@jeffdeecee's tweets](https://twitter.com/jeffdeecee).

| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1918 |
| Retweets | 424 |
| Short tweets | 318 |
| Tweets kept | 1176 |

[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/9vmqstjp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.

## Training procedure

The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jeffdeecee's tweets.

Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1bwn2sjp) for full transparency and reproducibility.

At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1bwn2sjp/artifacts) is logged and versioned.

## How to use

You can use this model directly with a pipeline for text generation:

```python
from transformers import pipeline
generator = pipeline('text-generation',
                     model='huggingtweets/jeffdeecee')
generator("My dream is", num_return_sequences=5)
```

## Limitations and bias

The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).

In addition, the data present in the user's tweets further affects the text generated by the model.

## About

*Built by Boris Dayma*

[![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma)

For more details, visit the project repository.

[![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)