File size: 13,785 Bytes
a3133eb
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7dd765ffd240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dd765ffd2d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dd765ffd360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dd765ffd3f0>", "_build": "<function ActorCriticPolicy._build at 0x7dd765ffd480>", "forward": "<function ActorCriticPolicy.forward at 0x7dd765ffd510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dd765ffd5a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dd765ffd630>", "_predict": "<function ActorCriticPolicy._predict at 0x7dd765ffd6c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dd765ffd750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dd765ffd7e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dd765ffd870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dd765fa3cc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712858138916575293, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2UCLvDQS26PUClO6LqLDhM7lG6Pp/ytwAAgD8AAIA/mlmvvFzDP7oNmVI5l5BbNP5caDpW8Xi4AACAPwAAgD+ajeo7XPduulDWWbkzjRcyxLCFuyhLezgAAIA/AACAP5pn6DxIX5q6HnecOhMkmDVfShU67MK0uQAAgD8AAIA/c+iUvVzjLroc+5e7JpfnN0e4RLpdqs+2AACAPwAAgD9g6lk+cFiQP7Omhz7DDbK+4j5WPmh5Eb0AAAAAAAAAADMBT7z2nEK6JV5Lunthx7UxYZM7WmlsOQAAgD8AAIA/QEGAPbm77z4u5mS+JrGRvtpD6r0AnVg9AAAAAAAAAACaLUE8wwV7usjnPLKNs/KuwXUcuxaGiDIAAIA/AACAP7OZ5L0syuk+EPkoPoItX77BZIQ9q93EvAAAAAAAAAAAzbaTPCnIfrpTyhs67g9wtlS2kbo+AWG1AACAPwAAgD8AUJq8XH8yupCE4johDxM23ErnOoa0BboAAIA/AACAP829sb3DqV66MFRxOlN4zzZgVIE6ud+TuQAAgD8AAIA/QEPnva4tpLpwaN49R/tyu4KmW7uap689AACAPwAAgD/Nn+c8wxV3umr5VDn6VDy2peAjOytTdbgAAIA/AACAP5pX8bxcgyK6N80+umldGjZAopA5bkFgOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGS2fMGHHm2MAWyUTegDjAF0lEdAkrp87yQPqnV9lChoBkdAZaN4xDb8FmgHTegDaAhHQJK7TCHh0hh1fZQoaAZHQGV7wm/nGKhoB03oA2gIR0CSu5tTUAktdX2UKGgGR0BnFVthuwX7aAdN6ANoCEdAkrvAH/tICnV9lChoBkdAZcVozN2TxGgHTegDaAhHQJK8yIGhVVB1fZQoaAZHQGWxbsfJV81oB03oA2gIR0CSv+HGCI1tdX2UKGgGR0BlHlfVqesgaAdN6ANoCEdAktWKol2NenV9lChoBkdAZYX0mMOwxGgHTegDaAhHQJLYjPt2LYR1fZQoaAZHQGOvzhP0qYtoB03oA2gIR0CS3TXGwRoRdX2UKGgGR0Bu4Tuv2Xb/aAdNvgJoCEdAkt3f5HmRvHV9lChoBkdAZdof/3nIQ2gHTegDaAhHQJLhbq6e5Fx1fZQoaAZHQGDjAkLQXyloB03oA2gIR0CS8hFCLMs6dX2UKGgGR0Bm9jBwdbPhaAdN6ANoCEdAkvsqDK5kLHV9lChoBkdAY5RfICEHuGgHTegDaAhHQJMEUnJDE3t1fZQoaAZHQGJtS/j81oBoB03oA2gIR0CTBaE9dNWVdX2UKGgGR0BhOqESM98raAdN6ANoCEdAkwZ1YhdMTXV9lChoBkdAZNpc9GI9DGgHTegDaAhHQJMIYSg5BC51fZQoaAZHQGUdkjHGS6loB03oA2gIR0CTCStJnQIEdX2UKGgGR0Bkr8cdYGMXaAdN6ANoCEdAkwl+DaoMrnV9lChoBkdAY/bBXS0BwWgHTegDaAhHQJMJpYLb5/N1fZQoaAZHQGJnkpI+W4VoB03oA2gIR0CTCqx5s0pFdX2UKGgGR0BkvimdiDujaAdN6ANoCEdAkw1aInBtUHV9lChoBkdAZBQbDMvAXWgHTegDaAhHQJMQezzErG11fZQoaAZHQGJSrg4wRGtoB03oA2gIR0CTJpMWXTmXdX2UKGgGR0BgjYaUA1ejaAdN6ANoCEdAkytkxubZvnV9lChoBkdAYwvQpF1B+mgHTegDaAhHQJMsE2zfJmx1fZQoaAZHQGelm8dxQzloB03oA2gIR0CTL8JT2nKodX2UKGgGR0BjkMN2C/XYaAdN6ANoCEdAk0Akq6OHWXV9lChoBkdAYtY1jRUm2WgHTegDaAhHQJNIqyE+Pil1fZQoaAZHQG8KSOR1X/5oB002A2gIR0CTTt4gzP8idX2UKGgGR0BhBBQWN3nqaAdN6ANoCEdAk1OpyU9py3V9lChoBkdAYOBLM9r432gHTegDaAhHQJNU5CzC1qp1fZQoaAZHQF82RaouPFNoB03oA2gIR0CTVbBczImxdX2UKGgGR0BmrtGCqZMMaAdN6ANoCEdAk1d6dlNDdHV9lChoBkdAaLnC/GlyimgHTegDaAhHQJNYO5hBqsV1fZQoaAZHQGAYRgy/KyRoB03oA2gIR0CTWIdX1anrdX2UKGgGR0Bi4vjn3cpLaAdN6ANoCEdAk1irm2b5M3V9lChoBkdAQcRG2CuloGgHTRYBaAhHQJNaNMj/uLJ1fZQoaAZHQGVq78FY+0RoB03oA2gIR0CTW+X7Lt/ndX2UKGgGR0BLnPuXu3MIaAdL1WgIR0CTXUgLJCBxdX2UKGgGR0Bh7bFhoduHaAdN6ANoCEdAk15+EAYHgXV9lChoBkdAZg+sLfDUE2gHTegDaAhHQJNyrYHxBmh1fZQoaAZHQF+m35N47ihoB03oA2gIR0CTduNyYG+sdX2UKGgGR0BgV0h5gPVeaAdN6ANoCEdAk3d9ALRa5nV9lChoBkdAYRAeyzHCGmgHTegDaAhHQJN64fxMFll1fZQoaAZHQHDh8Ft8/lhoB02AAWgIR0CTfeE5hjOLdX2UKGgGR0BPo+EqUeMiaAdL6GgIR0CThJTAWSEEdX2UKGgGR0BmEqOzY287aAdN6ANoCEdAk4nW2G7Bf3V9lChoBkdAcSSVTrE9+2gHTRsCaAhHQJOM0SIxgzB1fZQoaAZHQGekM67ulXRoB03oA2gIR0CTleLSuyNXdX2UKGgGR0BcQLrC3w1BaAdN6ANoCEdAk5qvfTCtR3V9lChoBkdAY8az9CNS62gHTegDaAhHQJObi//Nqxl1fZQoaAZHQGSxNLcsUZhoB03oA2gIR0CTnYDw6QvIdX2UKGgGR0BgcxZfUnXvaAdN6ANoCEdAk55U0aZQYXV9lChoBkdAY4aMSbpeNWgHTegDaAhHQJOerhOxjax1fZQoaAZHQGWUNiQT239oB03oA2gIR0CTntabWmP6dX2UKGgGR0Bj/LFOwgTzaAdN6ANoCEdAk6L0fs/puHV9lChoBkdAZz2IWxhUi2gHTegDaAhHQJOk3gP3BYV1fZQoaAZHQGQI15a/yoZoB03oA2gIR0CTqahYvFm4dX2UKGgGR0BT4uTmnwXqaAdL+mgIR0CTvWgnMMZxdX2UKGgGR0BkIyUNayKOaAdN6ANoCEdAk8I99YwIt3V9lChoBkdAZb8u+RHPNWgHTegDaAhHQJPGK/fwZwZ1fZQoaAZHQGJmbutwJgNoB03oA2gIR0CTyM6tT1kEdX2UKGgGR0Bh2ivkili0aAdN6ANoCEdAk89dUjs2N3V9lChoBkdAYHmku6ErXmgHTegDaAhHQJPVjLhaTwF1fZQoaAZHQGXXinxaxHJoB03oA2gIR0CT2PXGwRoRdX2UKGgGR0BxZ0bwSamXaAdNLAJoCEdAk+EMySFGonV9lChoBkdAYn7iz9jwx2gHTegDaAhHQJPlC/Firkt1fZQoaAZHQG/BweFL39JoB02GA2gIR0CT6BrLyMDPdX2UKGgGR0ByTDzAeq7zaAdNFAJoCEdAk+lCaEzwdHV9lChoBkdAXMLEaVD8cmgHTegDaAhHQJPqBxVAAyV1fZQoaAZHQGDBhmGucMFoB03oA2gIR0CT6toNd7fIdX2UKGgGR0BN8zgEU0vXaAdNAAFoCEdAk+sFYyO7x3V9lChoBkdAZM1YI0IkaGgHTegDaAhHQJPtvo8p1A91fZQoaAZHQGTJ74Ju2qloB03oA2gIR0CT7eWAPNFCdX2UKGgGR0BiKZC6Ymb9aAdN6ANoCEdAk/HQ8wHqvHV9lChoBkdAYc1ZuhsZYWgHTegDaAhHQJPzlgZ0jkd1fZQoaAZHQEhMjW07bL5oB0v/aAhHQJP3eKFZgXx1fZQoaAZHQGD1pul41P5oB03oA2gIR0CT+F/7SApbdX2UKGgGR0BgOmHN5dGBaAdN6ANoCEdAlBEhWDHwPXV9lChoBkdAcUm4x1xKhGgHTXMBaAhHQJQUUzl90A91fZQoaAZHQG1NCEQGwA5oB037AmgIR0CUFazjm0VrdX2UKGgGR0BxW7mITGo8aAdNRgFoCEdAlBZBSLqD9XV9lChoBkdAXkBOrQw9JWgHTegDaAhHQJQW7uv2XcB1fZQoaAZHQG+O500WM0hoB00yAmgIR0CUGF5Jbt7bdX2UKGgGR0BjmQnWrfcfaAdN6ANoCEdAlBvPxhDw6XV9lChoBkdAcECZfD1oQGgHTdMCaAhHQJQgld7fHgh1fZQoaAZHQHIV5wfhddFoB02xAWgIR0CUIRoA4n4PdX2UKGgGR0BtZrhUBGQTaAdNgQFoCEdAlCOQPNFBp3V9lChoBkdAZBKzcAR02mgHTegDaAhHQJQnsfJV81J1fZQoaAZHQGRObTUiILxoB03oA2gIR0CUKxpJPIn0dX2UKGgGR0BmG1CJGe+VaAdN6ANoCEdAlC+e6Ae7tnV9lChoBkdAcK6uKoAGS2gHTRUCaAhHQJQwb4pMHr11fZQoaAZHQG/w0gSvkiloB00HAmgIR0CUMH1MdtEYdX2UKGgGR0BdzB7mdRR/aAdN6ANoCEdAlDCWsFMZg3V9lChoBkdAcIZdUKiPAGgHTakBaAhHQJQxMlHBk7R1fZQoaAZHQGWGBoM8YANoB03oA2gIR0CUMsy/KyOadX2UKGgGR0ByH5kjHGS7aAdNdgNoCEdAlDaHOfNA1XV9lChoBkdAYYtMyJsO5WgHTegDaAhHQJQ4THMlkYp1fZQoaAZHQDfONgjQiRpoB00OAWgIR0CUPtFpwjt5dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}