hui168's picture
First check in
a3133eb verified
raw
history blame
14.1 kB
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7dd765ffd240>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dd765ffd2d0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dd765ffd360>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dd765ffd3f0>",
"_build": "<function ActorCriticPolicy._build at 0x7dd765ffd480>",
"forward": "<function ActorCriticPolicy.forward at 0x7dd765ffd510>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7dd765ffd5a0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dd765ffd630>",
"_predict": "<function ActorCriticPolicy._predict at 0x7dd765ffd6c0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dd765ffd750>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dd765ffd7e0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7dd765ffd870>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7dd765fa3cc0>"
},
"verbose": 1,
"policy_kwargs": {},
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1712858138916575293,
"learning_rate": 0.0003,
"tensorboard_log": null,
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2UCLvDQS26PUClO6LqLDhM7lG6Pp/ytwAAgD8AAIA/mlmvvFzDP7oNmVI5l5BbNP5caDpW8Xi4AACAPwAAgD+ajeo7XPduulDWWbkzjRcyxLCFuyhLezgAAIA/AACAP5pn6DxIX5q6HnecOhMkmDVfShU67MK0uQAAgD8AAIA/c+iUvVzjLroc+5e7JpfnN0e4RLpdqs+2AACAPwAAgD9g6lk+cFiQP7Omhz7DDbK+4j5WPmh5Eb0AAAAAAAAAADMBT7z2nEK6JV5Lunthx7UxYZM7WmlsOQAAgD8AAIA/QEGAPbm77z4u5mS+JrGRvtpD6r0AnVg9AAAAAAAAAACaLUE8wwV7usjnPLKNs/KuwXUcuxaGiDIAAIA/AACAP7OZ5L0syuk+EPkoPoItX77BZIQ9q93EvAAAAAAAAAAAzbaTPCnIfrpTyhs67g9wtlS2kbo+AWG1AACAPwAAgD8AUJq8XH8yupCE4johDxM23ErnOoa0BboAAIA/AACAP829sb3DqV66MFRxOlN4zzZgVIE6ud+TuQAAgD8AAIA/QEPnva4tpLpwaN49R/tyu4KmW7uap689AACAPwAAgD/Nn+c8wxV3umr5VDn6VDy2peAjOytTdbgAAIA/AACAP5pX8bxcgyK6N80+umldGjZAopA5bkFgOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGS2fMGHHm2MAWyUTegDjAF0lEdAkrp87yQPqnV9lChoBkdAZaN4xDb8FmgHTegDaAhHQJK7TCHh0hh1fZQoaAZHQGV7wm/nGKhoB03oA2gIR0CSu5tTUAktdX2UKGgGR0BnFVthuwX7aAdN6ANoCEdAkrvAH/tICnV9lChoBkdAZcVozN2TxGgHTegDaAhHQJK8yIGhVVB1fZQoaAZHQGWxbsfJV81oB03oA2gIR0CSv+HGCI1tdX2UKGgGR0BlHlfVqesgaAdN6ANoCEdAktWKol2NenV9lChoBkdAZYX0mMOwxGgHTegDaAhHQJLYjPt2LYR1fZQoaAZHQGOvzhP0qYtoB03oA2gIR0CS3TXGwRoRdX2UKGgGR0Bu4Tuv2Xb/aAdNvgJoCEdAkt3f5HmRvHV9lChoBkdAZdof/3nIQ2gHTegDaAhHQJLhbq6e5Fx1fZQoaAZHQGDjAkLQXyloB03oA2gIR0CS8hFCLMs6dX2UKGgGR0Bm9jBwdbPhaAdN6ANoCEdAkvsqDK5kLHV9lChoBkdAY5RfICEHuGgHTegDaAhHQJMEUnJDE3t1fZQoaAZHQGJtS/j81oBoB03oA2gIR0CTBaE9dNWVdX2UKGgGR0BhOqESM98raAdN6ANoCEdAkwZ1YhdMTXV9lChoBkdAZNpc9GI9DGgHTegDaAhHQJMIYSg5BC51fZQoaAZHQGUdkjHGS6loB03oA2gIR0CTCStJnQIEdX2UKGgGR0Bkr8cdYGMXaAdN6ANoCEdAkwl+DaoMrnV9lChoBkdAY/bBXS0BwWgHTegDaAhHQJMJpYLb5/N1fZQoaAZHQGJnkpI+W4VoB03oA2gIR0CTCqx5s0pFdX2UKGgGR0BkvimdiDujaAdN6ANoCEdAkw1aInBtUHV9lChoBkdAZBQbDMvAXWgHTegDaAhHQJMQezzErG11fZQoaAZHQGJSrg4wRGtoB03oA2gIR0CTJpMWXTmXdX2UKGgGR0BgjYaUA1ejaAdN6ANoCEdAkytkxubZvnV9lChoBkdAYwvQpF1B+mgHTegDaAhHQJMsE2zfJmx1fZQoaAZHQGelm8dxQzloB03oA2gIR0CTL8JT2nKodX2UKGgGR0BjkMN2C/XYaAdN6ANoCEdAk0Akq6OHWXV9lChoBkdAYtY1jRUm2WgHTegDaAhHQJNIqyE+Pil1fZQoaAZHQG8KSOR1X/5oB002A2gIR0CTTt4gzP8idX2UKGgGR0BhBBQWN3nqaAdN6ANoCEdAk1OpyU9py3V9lChoBkdAYOBLM9r432gHTegDaAhHQJNU5CzC1qp1fZQoaAZHQF82RaouPFNoB03oA2gIR0CTVbBczImxdX2UKGgGR0BmrtGCqZMMaAdN6ANoCEdAk1d6dlNDdHV9lChoBkdAaLnC/GlyimgHTegDaAhHQJNYO5hBqsV1fZQoaAZHQGAYRgy/KyRoB03oA2gIR0CTWIdX1anrdX2UKGgGR0Bi4vjn3cpLaAdN6ANoCEdAk1irm2b5M3V9lChoBkdAQcRG2CuloGgHTRYBaAhHQJNaNMj/uLJ1fZQoaAZHQGVq78FY+0RoB03oA2gIR0CTW+X7Lt/ndX2UKGgGR0BLnPuXu3MIaAdL1WgIR0CTXUgLJCBxdX2UKGgGR0Bh7bFhoduHaAdN6ANoCEdAk15+EAYHgXV9lChoBkdAZg+sLfDUE2gHTegDaAhHQJNyrYHxBmh1fZQoaAZHQF+m35N47ihoB03oA2gIR0CTduNyYG+sdX2UKGgGR0BgV0h5gPVeaAdN6ANoCEdAk3d9ALRa5nV9lChoBkdAYRAeyzHCGmgHTegDaAhHQJN64fxMFll1fZQoaAZHQHDh8Ft8/lhoB02AAWgIR0CTfeE5hjOLdX2UKGgGR0BPo+EqUeMiaAdL6GgIR0CThJTAWSEEdX2UKGgGR0BmEqOzY287aAdN6ANoCEdAk4nW2G7Bf3V9lChoBkdAcSSVTrE9+2gHTRsCaAhHQJOM0SIxgzB1fZQoaAZHQGekM67ulXRoB03oA2gIR0CTleLSuyNXdX2UKGgGR0BcQLrC3w1BaAdN6ANoCEdAk5qvfTCtR3V9lChoBkdAY8az9CNS62gHTegDaAhHQJObi//Nqxl1fZQoaAZHQGSxNLcsUZhoB03oA2gIR0CTnYDw6QvIdX2UKGgGR0BgcxZfUnXvaAdN6ANoCEdAk55U0aZQYXV9lChoBkdAY4aMSbpeNWgHTegDaAhHQJOerhOxjax1fZQoaAZHQGWUNiQT239oB03oA2gIR0CTntabWmP6dX2UKGgGR0Bj/LFOwgTzaAdN6ANoCEdAk6L0fs/puHV9lChoBkdAZz2IWxhUi2gHTegDaAhHQJOk3gP3BYV1fZQoaAZHQGQI15a/yoZoB03oA2gIR0CTqahYvFm4dX2UKGgGR0BT4uTmnwXqaAdL+mgIR0CTvWgnMMZxdX2UKGgGR0BkIyUNayKOaAdN6ANoCEdAk8I99YwIt3V9lChoBkdAZb8u+RHPNWgHTegDaAhHQJPGK/fwZwZ1fZQoaAZHQGJmbutwJgNoB03oA2gIR0CTyM6tT1kEdX2UKGgGR0Bh2ivkili0aAdN6ANoCEdAk89dUjs2N3V9lChoBkdAYHmku6ErXmgHTegDaAhHQJPVjLhaTwF1fZQoaAZHQGXXinxaxHJoB03oA2gIR0CT2PXGwRoRdX2UKGgGR0BxZ0bwSamXaAdNLAJoCEdAk+EMySFGonV9lChoBkdAYn7iz9jwx2gHTegDaAhHQJPlC/Firkt1fZQoaAZHQG/BweFL39JoB02GA2gIR0CT6BrLyMDPdX2UKGgGR0ByTDzAeq7zaAdNFAJoCEdAk+lCaEzwdHV9lChoBkdAXMLEaVD8cmgHTegDaAhHQJPqBxVAAyV1fZQoaAZHQGDBhmGucMFoB03oA2gIR0CT6toNd7fIdX2UKGgGR0BN8zgEU0vXaAdNAAFoCEdAk+sFYyO7x3V9lChoBkdAZM1YI0IkaGgHTegDaAhHQJPtvo8p1A91fZQoaAZHQGTJ74Ju2qloB03oA2gIR0CT7eWAPNFCdX2UKGgGR0BiKZC6Ymb9aAdN6ANoCEdAk/HQ8wHqvHV9lChoBkdAYc1ZuhsZYWgHTegDaAhHQJPzlgZ0jkd1fZQoaAZHQEhMjW07bL5oB0v/aAhHQJP3eKFZgXx1fZQoaAZHQGD1pul41P5oB03oA2gIR0CT+F/7SApbdX2UKGgGR0BgOmHN5dGBaAdN6ANoCEdAlBEhWDHwPXV9lChoBkdAcUm4x1xKhGgHTXMBaAhHQJQUUzl90A91fZQoaAZHQG1NCEQGwA5oB037AmgIR0CUFazjm0VrdX2UKGgGR0BxW7mITGo8aAdNRgFoCEdAlBZBSLqD9XV9lChoBkdAXkBOrQw9JWgHTegDaAhHQJQW7uv2XcB1fZQoaAZHQG+O500WM0hoB00yAmgIR0CUGF5Jbt7bdX2UKGgGR0BjmQnWrfcfaAdN6ANoCEdAlBvPxhDw6XV9lChoBkdAcECZfD1oQGgHTdMCaAhHQJQgld7fHgh1fZQoaAZHQHIV5wfhddFoB02xAWgIR0CUIRoA4n4PdX2UKGgGR0BtZrhUBGQTaAdNgQFoCEdAlCOQPNFBp3V9lChoBkdAZBKzcAR02mgHTegDaAhHQJQnsfJV81J1fZQoaAZHQGRObTUiILxoB03oA2gIR0CUKxpJPIn0dX2UKGgGR0BmG1CJGe+VaAdN6ANoCEdAlC+e6Ae7tnV9lChoBkdAcK6uKoAGS2gHTRUCaAhHQJQwb4pMHr11fZQoaAZHQG/w0gSvkiloB00HAmgIR0CUMH1MdtEYdX2UKGgGR0BdzB7mdRR/aAdN6ANoCEdAlDCWsFMZg3V9lChoBkdAcIZdUKiPAGgHTakBaAhHQJQxMlHBk7R1fZQoaAZHQGWGBoM8YANoB03oA2gIR0CUMsy/KyOadX2UKGgGR0ByH5kjHGS7aAdNdgNoCEdAlDaHOfNA1XV9lChoBkdAYYtMyJsO5WgHTegDaAhHQJQ4THMlkYp1fZQoaAZHQDfONgjQiRpoB00OAWgIR0CUPtFpwjt5dWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 248,
"observation_space": {
":type:": "<class 'gymnasium.spaces.box.Box'>",
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
"dtype": "float32",
"bounded_below": "[ True True True True True True True True]",
"bounded_above": "[ True True True True True True True True]",
"_shape": [
8
],
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
"n": "4",
"start": "0",
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
}
}