First check in
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +20 -20
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 263.08 +/- 24.01
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7dd765ffd240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dd765ffd2d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dd765ffd360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dd765ffd3f0>", "_build": "<function ActorCriticPolicy._build at 0x7dd765ffd480>", "forward": "<function ActorCriticPolicy.forward at 0x7dd765ffd510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dd765ffd5a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dd765ffd630>", "_predict": "<function ActorCriticPolicy._predict at 0x7dd765ffd6c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dd765ffd750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dd765ffd7e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dd765ffd870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dd765fa3cc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712859662151967341, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqDNrxc43y6UDatvEGalrQHZ0Q7wxUPNAAAgD8AAIA/M5TbvEjDirqqicI3ZyxstW4HO7vDVNq2AACAPwAAgD8Ad/m8rpWZul1N4Tm3HCe2ACKVuoFJAbkAAIA/AACAPwDkory45su5tyuLOtVqH7Y1Q7+5YNWfuQAAgD8AAIA/c/2APorgPz+yMGO85dqOvh7cVD5+Dc+9AAAAAAAAAABmou68j9YnvM10g7y+/eE8qvGJPU97t70AAIA/AACAPzNEAD32Lj68ruzKvYL1fr3imIq9jWxfvgAAgD8AAIA/M0OcOimwLboygP27dbB/NQPSOjpt/+60AACAPwAAgD/miC69UhjgudKnwbm8szAz2uANuxKbYrMAAIA/AACAPxpcX70puG26KkRLu4WFCThIKIY4GpP0OQAAgD8AAIA/TfMnPYQ3Az9V35e+JqZDvmrVm77tb9U9AAAAAAAAAABmBbC8j/4suoqqDbsEQlY4VPC+OiZwlTkAAIA/AACAP+Y4Q70fTde5rgi/OgmHxbSy8Hq6TiDiuQAAgD8AAIA/M9LbPHuSj7rO2KO7eyK9tmaH2TriRS02AACAPwAAgD8mE7g9duPBPnIe9bw8bWa+4YwhPSrLwb0AAAAAAAAAAJpYaj2CvIo/WswqPozBu74VGic87sK/PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGF+ugpSaVmMAWyUTegDjAF0lEdApSepJbt7bHV9lChoBkdAYQWhzNliB2gHTegDaAhHQKUqEwWWQfZ1fZQoaAZHQD32rPt2LYRoB0v+aAhHQKUqdYaHbh51fZQoaAZHQGROW6shgVpoB03oA2gIR0ClLBCCjDbbdX2UKGgGR0Bld4371qWUaAdN6ANoCEdApTS6gPEsKHV9lChoBkdAZpWZ/CqIamgHTegDaAhHQKU02uM+/xl1fZQoaAZHQFycMMZxaPloB03oA2gIR0ClNvaYVqN7dX2UKGgGR0BmyUzGgi/xaAdN6ANoCEdApTnzjrAxjHV9lChoBkdAZMUKNQ0oB2gHTegDaAhHQKU59PhQ3xZ1fZQoaAZHQGM2VCXyAhBoB03oA2gIR0ClPQGRmseXdX2UKGgGR0Bhb4q9XcQAaAdN6ANoCEdApT1d3Qla83V9lChoBkdAY4CZ3LV4HGgHTegDaAhHQKVANvxYq5N1fZQoaAZHQGYGMY2sJY1oB03oA2gIR0ClSo90q6OHdX2UKGgGR0A0lc/+sHSnaAdNEQFoCEdApUuKNjslcHV9lChoBkdAYGbnJ1aGH2gHTegDaAhHQKVM0wHqu8t1fZQoaAZHQGIQixu89OhoB03oA2gIR0ClThdLQHAzdX2UKGgGR0BigRyZKFqSaAdN6ANoCEdApVAVbFCLM3V9lChoBkdAXKJfb9If82gHTegDaAhHQKVRWMspXp51fZQoaAZHQGBTyncclw9oB03oA2gIR0ClU4q0MPSVdX2UKGgGR0Birvze40/GaAdN6ANoCEdApVPcug6EJ3V9lChoBkdAYs6a72+PBGgHTegDaAhHQKVVVjXFtKt1fZQoaAZHQEgctdRiw0RoB00EAWgIR0ClWP8WCVbBdX2UKGgGR0Bny57AtWdVaAdN6ANoCEdApVyB8YyftnV9lChoBkdAZLeQOFxn4GgHTegDaAhHQKVcnQID5j91fZQoaAZHQGV+wIldC3RoB03oA2gIR0ClXoMH8jzJdX2UKGgGR0BhyiZ0CA+ZaAdN6ANoCEdApWFOUQkHEHV9lChoBkdAYrhqsU7CBWgHTegDaAhHQKVlbPTG5tp1fZQoaAZHQGH9QcYIjW1oB03oA2gIR0ClZc6o2n89dX2UKGgGR0BgOhcJMQEqaAdN6ANoCEdApWk8y8BdU3V9lChoBkdAYuNZbILgGmgHTegDaAhHQKVqJUlRgqp1fZQoaAZHQGbEQdjoZAJoB03oA2gIR0CldCmhM8HOdX2UKGgGR0BlryEHt4RmaAdN6ANoCEdApXUiRwIdEXV9lChoBkdAZMepqh11XGgHTegDaAhHQKV2ejJuEVZ1fZQoaAZHQGYGUSAYpDxoB03oA2gIR0CleKP9UCJXdX2UKGgGR0BAkQOnVG1AaAdL6WgIR0ClekkpAlfJdX2UKGgGR0BfiLwWnCO4aAdN6ANoCEdApX1Wrn1WbXV9lChoBkdAaDDZkCmuT2gHTegDaAhHQKV9qh6By0d1fZQoaAZHQFMs8nuy/sVoB0vTaAhHQKV9vxaPjn51fZQoaAZHQGNTnezlcQloB03oA2gIR0Clfv24EwFldX2UKGgGR0Bjf8wpON5uaAdN6ANoCEdApYI/sE7nxXV9lChoBkdAY5oHN5dGAmgHTegDaAhHQKWFY7IT4+N1fZQoaAZHQGIeYlpoK2NoB03oA2gIR0ClhXrNwBHTdX2UKGgGR0BkkYZQ53kgaAdN6ANoCEdApYc/nB+F13V9lChoBkdAXbKOtGNJe2gHTegDaAhHQKWJyWGATZh1fZQoaAZHQGLGiMo+fRNoB03oA2gIR0CljH/fXPJJdX2UKGgGR0BmPmx2St/4aAdN6ANoCEdApYzZhnanJnV9lChoBkdAOGnwob4rSWgHS/doCEdApY5X4AS39nV9lChoBkdAX0+kvboKUmgHTegDaAhHQKWQCI/qxC91fZQoaAZHQGN4PM8ox59oB03oA2gIR0ClkdPzWf9QdX2UKGgGR0Bh+3tlZowmaAdN6ANoCEdApZz8VvddmnV9lChoBkdASqJ5NXYDkmgHTQwBaAhHQKWfAXb/Ot51fZQoaAZHQGDB1NHpbEBoB03oA2gIR0CloLvRJEpidX2UKGgGR0Blcb+R5kbxaAdN6ANoCEdApaIvFcY64nV9lChoBkdAYsTcrRSgoWgHTegDaAhHQKWke8kD6nB1fZQoaAZHQGCauZb6guhoB03oA2gIR0ClpNJsXSBtdX2UKGgGR0BkjRxzaK1paAdN6ANoCEdApaToUlAu7HV9lChoBkdAYiMNFz+3pmgHTegDaAhHQKWmVBSk0rN1fZQoaAZHQGOt8Gkep4toB03oA2gIR0ClqjU3wTdtdX2UKGgGR0Bj83qs2eg+aAdN6ANoCEdApa6VtALRbHV9lChoBkdAY1eCuloDgmgHTegDaAhHQKWusGjbi6x1fZQoaAZHQFq3EBsANodoB03oA2gIR0Cls1Ey+HrRdX2UKGgGR0BkhX/Pw/gSaAdN6ANoCEdApbZnKji4rnV9lChoBkdAZ/ryfcvdumgHTegDaAhHQKW4ktFKCg91fZQoaAZHQGGCGl67dzpoB03oA2gIR0ClunaS9ugpdX2UKGgGR0BkpIlyBClaaAdN6ANoCEdApbw4TGo73nV9lChoBkdAYxkW/JvHcWgHTegDaAhHQKXHUtjCpFV1fZQoaAZHQGfnIVuaWopoB03oA2gIR0ClyUzLW7OFdX2UKGgGR0BnavY4ACGOaAdN6ANoCEdApcr8f7rLQ3V9lChoBkdAY16SbH6uXGgHTegDaAhHQKXMXtbcGkh1fZQoaAZHQGHv2GATZg5oB03oA2gIR0ClzsCDujREdX2UKGgGR0BkSfPomoitaAdN6ANoCEdApc8Ukpqh13V9lChoBkdAXUXMhX8wYmgHTegDaAhHQKXPKrGza9N1fZQoaAZHQF2ksyi22G9oB03oA2gIR0Cl0JVq33HrdX2UKGgGR0BlQyM98qnWaAdN6ANoCEdApdQwnx8UmHV9lChoBkdAX814JNTLn2gHTegDaAhHQKXX4ItUXHl1fZQoaAZHQGQdENe+mFdoB03oA2gIR0Cl1/0nG828dX2UKGgGR0BcLrPMSsbOaAdN6ANoCEdApd6B2OhkAnV9lChoBkdAYQFTCtRvWGgHTegDaAhHQKXh4AxSHdp1fZQoaAZHQCELyvs7dSFoB0v/aAhHQKXiDbAUL2J1fZQoaAZHQGW1J1aGHpNoB03oA2gIR0Cl4/K20AtGdX2UKGgGR0Bj7rOgQHzIaAdN6ANoCEdApeW7p1RtQHV9lChoBkdAY1QOLBKtgmgHTegDaAhHQKXnbTuOS4h1fZQoaAZHQGRF1rRBu4xoB03oA2gIR0Cl6HfozN2UdX2UKGgGR0BcdyM1jy4GaAdN6ANoCEdApfQv9R77bnV9lChoBkdAYrxpZfUnX2gHTegDaAhHQKX2SpRXOnl1fZQoaAZHQGfIuhTOxB5oB03oA2gIR0Cl95fnfVI7dX2UKGgGR0BcNpdfLLZBaAdN6ANoCEdApfnDjm0VrXV9lChoBkdAZvrSsr/bTWgHTegDaAhHQKX6FLwF1Sx1fZQoaAZHQGIaRNh3JPtoB03oA2gIR0Cl+il72L5zdX2UKGgGR0Bjr9oN/e+FaAdN6ANoCEdApfts1uR9w3V9lChoBkdAYWLMg2ZRbmgHTegDaAhHQKX+qGNaQmx1fZQoaAZHQGS4flp48lpoB03oA2gIR0CmAcVlf7aadX2UKGgGR0A0lcz67/XHaAdNCAFoCEdApgK83AEdNnV9lChoBkdAYUwAq/dqL2gHTegDaAhHQKYGT0pVjqh1fZQoaAZHQGNNTRYzSCxoB03oA2gIR0CmCUJcX3xndX2UKGgGR0BhxjtZ3cHoaAdN6ANoCEdApglqFM7EHnV9lChoBkdAWmwgq3EycmgHTegDaAhHQKYLiYCyQgd1fZQoaAZHQF0xsXzlLe1oB03oA2gIR0CmDeAKOT7mdX2UKGgGR0BcVhBVuJk5aAdN6ANoCEdApg+t/hESd3V9lChoBkdAYXFkYGdI5GgHTegDaAhHQKYQrtb9qDd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.99999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c3ba8c9df30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c3ba8c9dfc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c3ba8c9e050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c3ba8c9e0e0>", "_build": "<function ActorCriticPolicy._build at 0x7c3ba8c9e170>", "forward": "<function ActorCriticPolicy.forward at 0x7c3ba8c9e200>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c3ba8c9e290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c3ba8c9e320>", "_predict": "<function ActorCriticPolicy._predict at 0x7c3ba8c9e3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c3ba8c9e440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c3ba8c9e4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c3ba8c9e560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c3ba8c4ef40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712862631688135341, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACwcT3DrTa6WgWpt9VYR7bGNxE7TVvPNgAAgD8AAIA/GpY5PeHIl7qjpZQ7wE1sOP+qkrmHeJe4AACAPwAAgD+a3X8+yQ5DP5Wh670nPnq+hesHPgt9Z70AAAAAAAAAAA04lj0Umoi6uVmJuWk8lDXdGhy7O5udOAAAgD8AAAAAmok2O3s+nrqiaTc01Llgr/li2Lokc6OzAACAPwAAgD+6GQC+QM9FP+OL9T3DELS+UvXmvMvVUT0AAAAAAAAAAJo5X7x7oqC6Wu/TuoD937WKnDG65gn0OQAAgD8AAIA/4CEIPkDqbz9Ki/W8El9wvkfrAj6F8da9AAAAAAAAAACaJhg93hsBPw7JijyNmZa+w8lNPIV4tzsAAAAAAAAAAPOskj2uaYC6bgIhOBORCTMAmiE6c+U7twAAgD8AAIA/AAoHPMMxfLrjgGu6RBRItbGyy7l4d4k5AACAPwAAgD/Nv8c8FBaCui4ZiLnREW+0IKX3OsdrnjgAAIA/AACAP+bYFD0UMJ663J41ORrAJzQFMhE6iHdRuAAAgD8AAIA/2j6JPcMZSbpAf263iY5MsOhxNrm8goo2AACAPwAAgD+Nv6Q9rkeBunc7j7s3wgI4KeX4OrLRM7cAAIA/AACAP+b6VT1IA4q6+unJugINtrVObjK6mKPqOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGX5kJKJ2uCMAWyUTegDjAF0lEdAo40MMTewcHV9lChoBkdAZm1p/PPcBWgHTegDaAhHQKONqW7e2ux1fZQoaAZHQFEQ6be/Ho5oB0vjaAhHQKOOmoWpIc11fZQoaAZHQGK7fjKgZjxoB03oA2gIR0CjkShp5/smdX2UKGgGR0BjQt4TsY2saAdN6ANoCEdAo5Fe85CF9XV9lChoBkdAYe7v6TGHYmgHTegDaAhHQKORujZ+QU51fZQoaAZHQGCroduHerNoB03oA2gIR0Cjk7SB06o3dX2UKGgGR0Bh4izHCGeuaAdN6ANoCEdAo5Rt0knkUHV9lChoBkdAOEcNMGorF2gHS/BoCEdAo5XVTzd1uHV9lChoBkdAYJT9rGipN2gHTegDaAhHQKOV45Jbt7d1fZQoaAZHQGNyYOMERrdoB03oA2gIR0Cjlq27Wd3CdX2UKGgGR0Bjto/A0sOHaAdN6ANoCEdAo6u7j/+85HV9lChoBkdAZPqb3Gn4wmgHTegDaAhHQKOr55ULlV91fZQoaAZHQGRvz3yqdYpoB03oA2gIR0CjrhgccU/OdX2UKGgGR0BmBtiBoVVQaAdN6ANoCEdAo642iaiKznV9lChoBkdAYnlKKYRdyGgHTegDaAhHQKOw7KDCgsd1fZQoaAZHQGYa4jrzGxVoB03oA2gIR0CjsPTLGJemdX2UKGgGR0BzJffP5YYBaAdNpgNoCEdAo7N/TZxrBXV9lChoBkdAcCeZ0CA+ZGgHTV0DaAhHQKO0ubXpW3l1fZQoaAZHQGHcx6v7m+1oB03oA2gIR0CjtPgWrOqvdX2UKGgGR0Bkij2i+L3saAdN6ANoCEdAo7hGXLNfPXV9lChoBkdAYxkmXw9aEGgHTegDaAhHQKO4ceEqUeN1fZQoaAZHQGPe+c6Nly1oB03oA2gIR0Cjurjzyz5XdX2UKGgGR0BkE0/4ZdfLaAdN6ANoCEdAo7urBj4Ho3V9lChoBkdAZi/JZntfHGgHTegDaAhHQKO900EX+ER1fZQoaAZHQGBrVlwtJ4BoB03oA2gIR0Cjveqbz9S/dX2UKGgGR0BiH9SVGCqZaAdN6ANoCEdAo78beXRgJHV9lChoBkdAbhH0163RX2gHTZACaAhHQKPNijxkNF11fZQoaAZHQC+ENvwVj7RoB00BAWgIR0Cjzk0CRwIddX2UKGgGR0BPwpI1+AmRaAdL/GgIR0CjzzjQ7cO9dX2UKGgGR0Bxj7ROUMXraAdNNgNoCEdAo8/02rGR3nV9lChoBkdAXSK/fwZwXWgHTegDaAhHQKPTxb6guh91fZQoaAZHQGgUlF2FFlVoB03oA2gIR0Cj0++kpI+XdX2UKGgGR0BlAqxs2vSuaAdN6ANoCEdAo9ccbxVhkXV9lChoBkdAOMW74BV+7WgHTQgBaAhHQKPX0Zm7J4l1fZQoaAZHQGO1uEM9bHJoB03oA2gIR0Cj2vJUgjhUdX2UKGgGR0BjQgFaB7NTaAdN6ANoCEdAo94bKzRhMXV9lChoBkdAZSV/LDAJs2gHTegDaAhHQKPfroakyk91fZQoaAZHQGgs5Ig/1QJoB03oA2gIR0Cj3/Z5JK8MdX2UKGgGR0BeZKQaJhvzaAdN6ANoCEdAo+PJ/ViF03V9lChoBkdAYQC3vx6OYWgHTegDaAhHQKPj/qJuVHF1fZQoaAZHQGD6uby6MBJoB03oA2gIR0Cj5ooClrM1dX2UKGgGR0BoYY+jdpIuaAdN6ANoCEdAo+dX+ZPVNHV9lChoBkdAY4ohib2DhGgHTegDaAhHQKPo46uGKyh1fZQoaAZHQHFe4EbHZK5oB00BAmgIR0Cj64E0Jng6dX2UKGgGR0ByPBKEnLJTaAdNrgNoCEdAo/Cmws5GSnV9lChoBkdAYV5h73PAwmgHTegDaAhHQKP6E4JeE7J1fZQoaAZHQGAlrX+VC5VoB03oA2gIR0Cj+6RBeHBUdX2UKGgGR0Bm7wwmE5AAaAdN6ANoCEdAo/7zbtZ3cHV9lChoBkdAZRLZwn6VMWgHTegDaAhHQKP/HRhMJyB1fZQoaAZHQGCio11nuiNoB03oA2gIR0CkAV+8f3evdX2UKGgGR0BjiLZ39rGjaAdN6ANoCEdApAHeLYPGyXV9lChoBkdAZXdWUbDMvGgHTegDaAhHQKQISBvrGBF1fZQoaAZHQGUsZmRNh3JoB03oA2gIR0CkCo++Eh7mdX2UKGgGR0BiGZoGpuMuaAdN6ANoCEdApAr6xPfsNXV9lChoBkdAYygad+Xqq2gHTegDaAhHQKQPNGgBcRl1fZQoaAZHQGgDYdZJTVFoB03oA2gIR0CkD3APEsJ6dX2UKGgGR0Byndu1ndweaAdNJQNoCEdApBEcuYhManV9lChoBkdAYe4Rvm5lOGgHTegDaAhHQKQR9DJlrdp1fZQoaAZHQGPQLmITGo9oB03oA2gIR0CkEryTY/VzdX2UKGgGR0BmVzwF1SwXaAdN6ANoCEdApBRPbCaZyHV9lChoBkdAZErMGorFwWgHTegDaAhHQKQcIP4EfT11fZQoaAZHQGWhblRxcVxoB03oA2gIR0CkHUwBHTZydX2UKGgGR0BjhoYxcmjTaAdN6ANoCEdApCfUkhRqGnV9lChoBkdAaI4tNi6QNmgHTegDaAhHQKQrHAhStNl1fZQoaAZHQGI9oZZSvTxoB03oA2gIR0CkK0Hy3CsPdX2UKGgGR0Bjx8aMrEtNaAdN6ANoCEdApC1sY64lQnV9lChoBkdAZ7p6Eal1sGgHTegDaAhHQKQt1D/lyR11fZQoaAZHQGYapuuRs/JoB03oA2gIR0CkMwmjbi6ydX2UKGgGR0BwN4fvF3pwaAdNdwFoCEdApDM1qcmShnV9lChoBkdAZd2qVhTfi2gHTegDaAhHQKQ0cqFRHgB1fZQoaAZHQGXMPqkdmxtoB03oA2gIR0CkNK8wQDmsdX2UKGgGR0Bxc9UxVQyiaAdNFQJoCEdApDaUR15jY3V9lChoBkdAYk+BDG96C2gHTegDaAhHQKQ4LF1jiGZ1fZQoaAZHQF7+uJDVpbloB03oA2gIR0CkOGsJY1YRdX2UKGgGR0BkBMuQIUrTaAdN6ANoCEdApDpsBCD28XV9lChoBkdAZuTMxoIv8WgHTegDaAhHQKQ7maR6nix1fZQoaAZHQGI1WCEpRXRoB03oA2gIR0CkPMDrqt5ldX2UKGgGR0Bl4Pb/Ot4iaAdN6ANoCEdApD5n7m+0xHV9lChoBkdAX1nTZxrBTGgHTegDaAhHQKRHJRsMy8B1fZQoaAZHQG4ldQfp2U1oB00tAmgIR0CkR1/GlyimdX2UKGgGR0BiupM+NcW1aAdN6ANoCEdApFgowblzVHV9lChoBkdAZGbjVhCtzWgHTegDaAhHQKRYYeWfK6p1fZQoaAZHQGLL5r56+nJoB03oA2gIR0CkW4rYPGyYdX2UKGgGR0BmcIHRkVesaAdN6ANoCEdApFwno5ggHXV9lChoBkdAYe7kyULUkWgHTegDaAhHQKRjBepn6Ed1fZQoaAZHQHOjbrxAjY9oB028AmgIR0CkY/Pt+kP+dX2UKGgGR0BiIsan752yaAdN6ANoCEdApGSPBvaURnV9lChoBkdAY9vG7z06HWgHTegDaAhHQKRk0wUQCjl1fZQoaAZHQGGJJxeb/fhoB03oA2gIR0CkZtgA6uGLdX2UKGgGR0BhiDyMDOkdaAdN6ANoCEdApGhd5yEL6XV9lChoBkdAYWNRtxdY4mgHTegDaAhHQKRojkgfU4J1fZQoaAZHQGJ2j5bhWHVoB03oA2gIR0CkaigavRqodX2UKGgGR0Bf2osRQJokaAdN6ANoCEdApGs14mkWRHV9lChoBkdAZ3cd92HLzWgHTegDaAhHQKRsO+wkgOl1fZQoaAZHQHEqQU+LWI5oB00iAmgIR0CkbFoNmUW3dX2UKGgGR0ByVfqJMxoJaAdNtQJoCEdApHQ6bnX/YXV9lChoBkdAY6lg/C66KGgHTegDaAhHQKR12puuRtB1fZQoaAZHQF3GK4QSSNhoB03oA2gIR0CkdgW+PBBSdX2UKGgGR0ByPqP+4smOaAdNqgFoCEdApHctIuoP1HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.99999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c319758135f9b5430146d8a699547218290ecd48cd3947578175e3b384f95561
|
3 |
+
size 147575
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,17 +41,17 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c3ba8c9df30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c3ba8c9dfc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c3ba8c9e050>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c3ba8c9e0e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c3ba8c9e170>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c3ba8c9e200>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c3ba8c9e290>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c3ba8c9e320>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c3ba8c9e3b0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c3ba8c9e440>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c3ba8c9e4d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c3ba8c9e560>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c3ba8c4ef40>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2015232,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1712862631688135341,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACwcT3DrTa6WgWpt9VYR7bGNxE7TVvPNgAAgD8AAIA/GpY5PeHIl7qjpZQ7wE1sOP+qkrmHeJe4AACAPwAAgD+a3X8+yQ5DP5Wh670nPnq+hesHPgt9Z70AAAAAAAAAAA04lj0Umoi6uVmJuWk8lDXdGhy7O5udOAAAgD8AAAAAmok2O3s+nrqiaTc01Llgr/li2Lokc6OzAACAPwAAgD+6GQC+QM9FP+OL9T3DELS+UvXmvMvVUT0AAAAAAAAAAJo5X7x7oqC6Wu/TuoD937WKnDG65gn0OQAAgD8AAIA/4CEIPkDqbz9Ki/W8El9wvkfrAj6F8da9AAAAAAAAAACaJhg93hsBPw7JijyNmZa+w8lNPIV4tzsAAAAAAAAAAPOskj2uaYC6bgIhOBORCTMAmiE6c+U7twAAgD8AAIA/AAoHPMMxfLrjgGu6RBRItbGyy7l4d4k5AACAPwAAgD/Nv8c8FBaCui4ZiLnREW+0IKX3OsdrnjgAAIA/AACAP+bYFD0UMJ663J41ORrAJzQFMhE6iHdRuAAAgD8AAIA/2j6JPcMZSbpAf263iY5MsOhxNrm8goo2AACAPwAAgD+Nv6Q9rkeBunc7j7s3wgI4KeX4OrLRM7cAAIA/AACAP+b6VT1IA4q6+unJugINtrVObjK6mKPqOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.007616000000000067,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGX5kJKJ2uCMAWyUTegDjAF0lEdAo40MMTewcHV9lChoBkdAZm1p/PPcBWgHTegDaAhHQKONqW7e2ux1fZQoaAZHQFEQ6be/Ho5oB0vjaAhHQKOOmoWpIc11fZQoaAZHQGK7fjKgZjxoB03oA2gIR0CjkShp5/smdX2UKGgGR0BjQt4TsY2saAdN6ANoCEdAo5Fe85CF9XV9lChoBkdAYe7v6TGHYmgHTegDaAhHQKORujZ+QU51fZQoaAZHQGCroduHerNoB03oA2gIR0Cjk7SB06o3dX2UKGgGR0Bh4izHCGeuaAdN6ANoCEdAo5Rt0knkUHV9lChoBkdAOEcNMGorF2gHS/BoCEdAo5XVTzd1uHV9lChoBkdAYJT9rGipN2gHTegDaAhHQKOV45Jbt7d1fZQoaAZHQGNyYOMERrdoB03oA2gIR0Cjlq27Wd3CdX2UKGgGR0Bjto/A0sOHaAdN6ANoCEdAo6u7j/+85HV9lChoBkdAZPqb3Gn4wmgHTegDaAhHQKOr55ULlV91fZQoaAZHQGRvz3yqdYpoB03oA2gIR0CjrhgccU/OdX2UKGgGR0BmBtiBoVVQaAdN6ANoCEdAo642iaiKznV9lChoBkdAYnlKKYRdyGgHTegDaAhHQKOw7KDCgsd1fZQoaAZHQGYa4jrzGxVoB03oA2gIR0CjsPTLGJemdX2UKGgGR0BzJffP5YYBaAdNpgNoCEdAo7N/TZxrBXV9lChoBkdAcCeZ0CA+ZGgHTV0DaAhHQKO0ubXpW3l1fZQoaAZHQGHcx6v7m+1oB03oA2gIR0CjtPgWrOqvdX2UKGgGR0Bkij2i+L3saAdN6ANoCEdAo7hGXLNfPXV9lChoBkdAYxkmXw9aEGgHTegDaAhHQKO4ceEqUeN1fZQoaAZHQGPe+c6Nly1oB03oA2gIR0Cjurjzyz5XdX2UKGgGR0BkE0/4ZdfLaAdN6ANoCEdAo7urBj4Ho3V9lChoBkdAZi/JZntfHGgHTegDaAhHQKO900EX+ER1fZQoaAZHQGBrVlwtJ4BoB03oA2gIR0Cjveqbz9S/dX2UKGgGR0BiH9SVGCqZaAdN6ANoCEdAo78beXRgJHV9lChoBkdAbhH0163RX2gHTZACaAhHQKPNijxkNF11fZQoaAZHQC+ENvwVj7RoB00BAWgIR0Cjzk0CRwIddX2UKGgGR0BPwpI1+AmRaAdL/GgIR0CjzzjQ7cO9dX2UKGgGR0Bxj7ROUMXraAdNNgNoCEdAo8/02rGR3nV9lChoBkdAXSK/fwZwXWgHTegDaAhHQKPTxb6guh91fZQoaAZHQGgUlF2FFlVoB03oA2gIR0Cj0++kpI+XdX2UKGgGR0BlAqxs2vSuaAdN6ANoCEdAo9ccbxVhkXV9lChoBkdAOMW74BV+7WgHTQgBaAhHQKPX0Zm7J4l1fZQoaAZHQGO1uEM9bHJoB03oA2gIR0Cj2vJUgjhUdX2UKGgGR0BjQgFaB7NTaAdN6ANoCEdAo94bKzRhMXV9lChoBkdAZSV/LDAJs2gHTegDaAhHQKPfroakyk91fZQoaAZHQGgs5Ig/1QJoB03oA2gIR0Cj3/Z5JK8MdX2UKGgGR0BeZKQaJhvzaAdN6ANoCEdAo+PJ/ViF03V9lChoBkdAYQC3vx6OYWgHTegDaAhHQKPj/qJuVHF1fZQoaAZHQGD6uby6MBJoB03oA2gIR0Cj5ooClrM1dX2UKGgGR0BoYY+jdpIuaAdN6ANoCEdAo+dX+ZPVNHV9lChoBkdAY4ohib2DhGgHTegDaAhHQKPo46uGKyh1fZQoaAZHQHFe4EbHZK5oB00BAmgIR0Cj64E0Jng6dX2UKGgGR0ByPBKEnLJTaAdNrgNoCEdAo/Cmws5GSnV9lChoBkdAYV5h73PAwmgHTegDaAhHQKP6E4JeE7J1fZQoaAZHQGAlrX+VC5VoB03oA2gIR0Cj+6RBeHBUdX2UKGgGR0Bm7wwmE5AAaAdN6ANoCEdAo/7zbtZ3cHV9lChoBkdAZRLZwn6VMWgHTegDaAhHQKP/HRhMJyB1fZQoaAZHQGCio11nuiNoB03oA2gIR0CkAV+8f3evdX2UKGgGR0BjiLZ39rGjaAdN6ANoCEdApAHeLYPGyXV9lChoBkdAZXdWUbDMvGgHTegDaAhHQKQISBvrGBF1fZQoaAZHQGUsZmRNh3JoB03oA2gIR0CkCo++Eh7mdX2UKGgGR0BiGZoGpuMuaAdN6ANoCEdApAr6xPfsNXV9lChoBkdAYygad+Xqq2gHTegDaAhHQKQPNGgBcRl1fZQoaAZHQGgDYdZJTVFoB03oA2gIR0CkD3APEsJ6dX2UKGgGR0Byndu1ndweaAdNJQNoCEdApBEcuYhManV9lChoBkdAYe4Rvm5lOGgHTegDaAhHQKQR9DJlrdp1fZQoaAZHQGPQLmITGo9oB03oA2gIR0CkEryTY/VzdX2UKGgGR0BmVzwF1SwXaAdN6ANoCEdApBRPbCaZyHV9lChoBkdAZErMGorFwWgHTegDaAhHQKQcIP4EfT11fZQoaAZHQGWhblRxcVxoB03oA2gIR0CkHUwBHTZydX2UKGgGR0BjhoYxcmjTaAdN6ANoCEdApCfUkhRqGnV9lChoBkdAaI4tNi6QNmgHTegDaAhHQKQrHAhStNl1fZQoaAZHQGI9oZZSvTxoB03oA2gIR0CkK0Hy3CsPdX2UKGgGR0Bjx8aMrEtNaAdN6ANoCEdApC1sY64lQnV9lChoBkdAZ7p6Eal1sGgHTegDaAhHQKQt1D/lyR11fZQoaAZHQGYapuuRs/JoB03oA2gIR0CkMwmjbi6ydX2UKGgGR0BwN4fvF3pwaAdNdwFoCEdApDM1qcmShnV9lChoBkdAZd2qVhTfi2gHTegDaAhHQKQ0cqFRHgB1fZQoaAZHQGXMPqkdmxtoB03oA2gIR0CkNK8wQDmsdX2UKGgGR0Bxc9UxVQyiaAdNFQJoCEdApDaUR15jY3V9lChoBkdAYk+BDG96C2gHTegDaAhHQKQ4LF1jiGZ1fZQoaAZHQF7+uJDVpbloB03oA2gIR0CkOGsJY1YRdX2UKGgGR0BkBMuQIUrTaAdN6ANoCEdApDpsBCD28XV9lChoBkdAZuTMxoIv8WgHTegDaAhHQKQ7maR6nix1fZQoaAZHQGI1WCEpRXRoB03oA2gIR0CkPMDrqt5ldX2UKGgGR0Bl4Pb/Ot4iaAdN6ANoCEdApD5n7m+0xHV9lChoBkdAX1nTZxrBTGgHTegDaAhHQKRHJRsMy8B1fZQoaAZHQG4ldQfp2U1oB00tAmgIR0CkR1/GlyimdX2UKGgGR0BiupM+NcW1aAdN6ANoCEdApFgowblzVHV9lChoBkdAZGbjVhCtzWgHTegDaAhHQKRYYeWfK6p1fZQoaAZHQGLL5r56+nJoB03oA2gIR0CkW4rYPGyYdX2UKGgGR0BmcIHRkVesaAdN6ANoCEdApFwno5ggHXV9lChoBkdAYe7kyULUkWgHTegDaAhHQKRjBepn6Ed1fZQoaAZHQHOjbrxAjY9oB028AmgIR0CkY/Pt+kP+dX2UKGgGR0BiIsan752yaAdN6ANoCEdApGSPBvaURnV9lChoBkdAY9vG7z06HWgHTegDaAhHQKRk0wUQCjl1fZQoaAZHQGGJJxeb/fhoB03oA2gIR0CkZtgA6uGLdX2UKGgGR0BhiDyMDOkdaAdN6ANoCEdApGhd5yEL6XV9lChoBkdAYWNRtxdY4mgHTegDaAhHQKRojkgfU4J1fZQoaAZHQGJ2j5bhWHVoB03oA2gIR0CkaigavRqodX2UKGgGR0Bf2osRQJokaAdN6ANoCEdApGs14mkWRHV9lChoBkdAZ3cd92HLzWgHTegDaAhHQKRsO+wkgOl1fZQoaAZHQHEqQU+LWI5oB00iAmgIR0CkbFoNmUW3dX2UKGgGR0ByVfqJMxoJaAdNtQJoCEdApHQ6bnX/YXV9lChoBkdAY6lg/C66KGgHTegDaAhHQKR12puuRtB1fZQoaAZHQF3GK4QSSNhoB03oA2gIR0CkdgW+PBBSdX2UKGgGR0ByPqP+4smOaAdNqgFoCEdApHctIuoP1HVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 492,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5a749dd7b69c81d145a962281cd16d2c2f4d19e154b2d7bb12a6f9bf8b959ac
|
3 |
+
size 87978
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5115ab83f7cbac4d92f669f40bb7df40d9c39514285b07c8721c2b22d73dee0
|
3 |
+
size 43634
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.2.1+cu121
|
5 |
-
- GPU Enabled:
|
6 |
- Numpy: 1.25.2
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.2.1+cu121
|
5 |
+
- GPU Enabled: False
|
6 |
- Numpy: 1.25.2
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 263.0813216, "std_reward": 24.007505473595945, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-11T20:02:22.445940"}
|