hui168 commited on
Commit
1e5e9c2
·
1 Parent(s): dbdb524

Initial commit

Browse files
ppo-SpaceInvadersNoFrameskip-v4.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9661ab6280437c2cf0cb4fe3a070806d820db479f3d0c900f02badf2ead130a2
3
  size 20441960
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95a8e8db99a1436370340436d6d6516da8a91c1cbde93c693150327fe6801725
3
  size 20441960
ppo-SpaceInvadersNoFrameskip-v4/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVPgAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMFEFjdG9yQ3JpdGljQ25uUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n CNN policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticCnnPolicy.__init__ at 0x000001FFBEED8680>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x000001FFBEEC66C0>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {},
@@ -80,14 +80,14 @@
80
  "__module__": "stable_baselines3.common.buffers",
81
  "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'advantages': <class 'numpy.ndarray'>, 'returns': <class 'numpy.ndarray'>, 'episode_starts': <class 'numpy.ndarray'>, 'log_probs': <class 'numpy.ndarray'>, 'values': <class 'numpy.ndarray'>}",
82
  "__doc__": "\n Rollout buffer used in on-policy algorithms like A2C/PPO.\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to classic advantage when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ",
83
- "__init__": "<function RolloutBuffer.__init__ at 0x000001FFBEE1CA40>",
84
- "reset": "<function RolloutBuffer.reset at 0x000001FFBEE1CAE0>",
85
- "compute_returns_and_advantage": "<function RolloutBuffer.compute_returns_and_advantage at 0x000001FFBEE1CB80>",
86
- "add": "<function RolloutBuffer.add at 0x000001FFBEE1CCC0>",
87
- "get": "<function RolloutBuffer.get at 0x000001FFBEE1CD60>",
88
- "_get_samples": "<function RolloutBuffer._get_samples at 0x000001FFBEE1CE00>",
89
  "__abstractmethods__": "frozenset()",
90
- "_abc_impl": "<_abc._abc_data object at 0x000001FFBED97400>"
91
  },
92
  "rollout_buffer_kwargs": {},
93
  "batch_size": 256,
 
4
  ":serialized:": "gAWVPgAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMFEFjdG9yQ3JpdGljQ25uUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n CNN policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticCnnPolicy.__init__ at 0x0000011CF5048680>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x0000011CF503A1C0>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {},
 
80
  "__module__": "stable_baselines3.common.buffers",
81
  "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'advantages': <class 'numpy.ndarray'>, 'returns': <class 'numpy.ndarray'>, 'episode_starts': <class 'numpy.ndarray'>, 'log_probs': <class 'numpy.ndarray'>, 'values': <class 'numpy.ndarray'>}",
82
  "__doc__": "\n Rollout buffer used in on-policy algorithms like A2C/PPO.\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to classic advantage when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ",
83
+ "__init__": "<function RolloutBuffer.__init__ at 0x0000011CF4F8CA40>",
84
+ "reset": "<function RolloutBuffer.reset at 0x0000011CF4F8CAE0>",
85
+ "compute_returns_and_advantage": "<function RolloutBuffer.compute_returns_and_advantage at 0x0000011CF4F8CB80>",
86
+ "add": "<function RolloutBuffer.add at 0x0000011CF4F8CCC0>",
87
+ "get": "<function RolloutBuffer.get at 0x0000011CF4F8CD60>",
88
+ "_get_samples": "<function RolloutBuffer._get_samples at 0x0000011CF4F8CE00>",
89
  "__abstractmethods__": "frozenset()",
90
+ "_abc_impl": "<_abc._abc_data object at 0x0000011CF4F07180>"
91
  },
92
  "rollout_buffer_kwargs": {},
93
  "batch_size": 256,
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 144.5, "std_reward": 99.2585008953893, "is_deterministic": false, "n_eval_episodes": 10, "eval_datetime": "2024-06-20T17:52:39.212184"}
 
1
+ {"mean_reward": 144.5, "std_reward": 99.2585008953893, "is_deterministic": false, "n_eval_episodes": 10, "eval_datetime": "2024-06-20T18:06:13.662102"}