huihui-ai commited on
Commit
2f6b433
·
verified ·
1 Parent(s): a10ce41

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -3
README.md CHANGED
@@ -1,3 +1,105 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - huihui-ai/QWQ-LONGCOT-500K
5
+ - huihui-ai/LONGCOT-Refine-500K
6
+ base_model:
7
+ - huihui-ai/Llama-3.2-3B-Instruct-abliterated
8
+
9
+ tags:
10
+ - llama3.2
11
+ - abliterated
12
+ - uncensored
13
+ ---
14
+ # MicroThinker-3B-Preview
15
+
16
+ MicroThinker-3B-Preview, a new model fine-tuned from the [huihui-ai/Llama-3.2-3B-Instruct-abliterated](https://huggingface.co/huihui-ai/Llama-3.2-3B-Instruct-abliterated) model, focused on advancing AI reasoning capabilities.
17
+
18
+ ## Training Details
19
+
20
+ This is just a test, but the performance is quite good.
21
+
22
+ The model is still being fine-tuned, but it will be ready very soon.
23
+
24
+ Now, I'll introduce the test environment.
25
+
26
+ The model was trained using 1 RTX 4090 GPU(24GB) .
27
+
28
+ The fine-tuning process used only 20,000 records from each dataset.
29
+
30
+ The [SFT (Supervised Fine-Tuning)](https://github.com/modelscope/ms-swift) process is divided into several steps, and no code needs to be written.
31
+ 1. Create the environment.
32
+
33
+ ```
34
+ conda create -yn ms-swift python=3.11
35
+ conda activate ms-swift
36
+
37
+ git clone https://github.com/modelscope/ms-swift.git
38
+
39
+ cd ms-swift
40
+ pip install -e .
41
+ cd ..
42
+ ```
43
+
44
+
45
+ 2. Download the model and dataset.
46
+
47
+ ```
48
+ huggingface-cli download huihui-ai/Llama-3.2-3B-Instruct-abliterated --local-dir ./huihui-ai/Llama-3.2-3B-Instruct-abliterated
49
+ huggingface-cli download --repo-type dataset huihui-ai/QWQ-LONGCOT-500K --local-dir ./data/QWQ-LONGCOT-500K
50
+ huggingface-cli download --repo-type dataset huihui-ai/LONGCOT-Refine-500K --local-dir ./data/LONGCOT-Refine-500K
51
+ ```
52
+
53
+
54
+ 3. Used only the huihui-ai/QWQ-LONGCOT-500K dataset (#20000), Trained for 1 epoch:
55
+
56
+ ```
57
+ swift sft --model huihui-ai/Llama-3.2-3B-Instruct-abliterated --model_type llama3_2 --train_type lora --dataset "data/QWQ-LONGCOT-500K/qwq_500k.jsonl#20000" --torch_dtype bfloat16 --num_train_epochs 1 --per_device_train_batch_size 1 --per_device_eval_batch_size 1 --learning_rate 1e-4 --lora_rank 8 --lora_alpha 32 --target_modules all-linear --gradient_accumulation_steps 16 --eval_steps 50 --save_steps 50 --save_total_limit 2 --logging_steps 5 --max_length 16384 --output_dir output/Llama-3.2-3B-Instruct-abliterated/lora/sft --system "You are a helpful assistant. You should think step-by-step." --warmup_ratio 0.05 --dataloader_num_workers 4 --model_author "huihui-ai" --model_name "huihui-ai-robot"
58
+ ```
59
+
60
+
61
+ 4. Save the fine-tuned model.
62
+ Replace the directories below with specific ones.
63
+
64
+ ```
65
+ swift infer --model huihui-ai/Llama-3.2-3B-Instruct-abliterated --adapters output/Llama-3.2-3B-Instruct-abliterated/lora/sft/v0-20250102-153619/checkpoint-1237 --merge_lora true
66
+ ```
67
+
68
+
69
+ This should create a new model directory: `checkpoint-1237-merged`, Copy or move this directory to the `huihui` directory.
70
+
71
+ 5. Perform inference on the fine-tuned model.
72
+
73
+ ```
74
+ swift infer --model huihui/checkpoint-1237-merged --stream true --infer_backend pt --max_new_tokens 8192
75
+ ```
76
+
77
+
78
+ 6. Combined training with huihui-ai/QWQ-LONGCOT-500K (#20000) and huihui-ai/LONGCOT-Refine datasets (#20000), Trained for 1 epoch:
79
+
80
+ ```
81
+ swift sft --model huihui-ai/checkpoint-1237-merged --model_type llama3_2 --train_type lora --dataset "data/QWQ-LONGCOT-500K/qwq_500k.jsonl#20000" "data/LONGCOT-Refine-500K/refine_from_qwen2_5.jsonl#20000" --torch_dtype bfloat16 --num_train_epochs 1 --per_device_train_batch_size 1 --per_device_eval_batch_size 1 --learning_rate 1e-4 --lora_rank 8 --lora_alpha 32 --target_modules all-linear --gradient_accumulation_steps 16 --eval_steps 50 --save_steps 50 --save_total_limit 2 --logging_steps 5 --max_length 16384 --output_dir output/Llama-3.2-3B-Instruct-abliterated/lora/sft2 --system "You are a helpful assistant. You should think step-by-step." --warmup_ratio 0.05 --dataloader_num_workers 4 --model_author "huihui-ai" --model_name "huihui-ai-robot"
82
+ ```
83
+
84
+
85
+ 7. Save the final fine-tuned model.
86
+ Replace the directories below with specific ones.
87
+
88
+ ```
89
+ swift infer --model huihui-ai/checkpoint-1237-merged --adapters output/Llama-3.2-3B-Instruct-abliterated/lora/sft2/v0-20250103-121319/checkpoint-1237 --merge_lora true
90
+ ```
91
+
92
+
93
+ This should create a new model directory: `checkpoint-1237-merged`, Rename the directory to `MicroThinker-3B-Preview`, Copy or move this directory to the `huihui` directory.
94
+
95
+ 8. Perform inference on the final fine-tuned model.
96
+
97
+ ```
98
+ swift infer --model huihui/MicroThinker-3B-Preview --stream true --infer_backend pt --max_new_tokens 8192
99
+ ```
100
+
101
+ 9. Test examples.
102
+
103
+ ```
104
+ How many 'r' characters are there in the word "strawberry"?
105
+ ```