--- tags: - flair - entity-mention-linker --- ## biosyn-sapbert-ncbi-disease Biomedical Entity Mention Linking for diseases: - Model: [dmis-lab/biosyn-sapbert-ncbi-disease](https://huggingface.co/dmis-lab/biosyn-sapbert-ncbi-disease) - Dictionary: [CTD Diseases](https://ctdbase.org/voc.go?type=disease) (See License) ### Demo: How to use in Flair Requires: - **[Flair](https://github.com/flairNLP/flair/)>=0.14.0** (`pip install flair` or `pip install git+https://github.com/flairNLP/flair.git`) ```python from flair.data import Sentence from flair.models import Classifier, EntityMentionLinker from flair.tokenization import SciSpacyTokenizer sentence = Sentence( "The mutation in the ABCD1 gene causes X-linked adrenoleukodystrophy, " "a neurodegenerative disease, which is exacerbated by exposure to high " "levels of mercury in dolphin populations.", use_tokenizer=SciSpacyTokenizer() ) # load hunflair to detect the entity mentions we want to link. tagger = Classifier.load("hunflair-disease") tagger.predict(sentence) # load the linker and dictionary linker = EntityMentionLinker.load("hunflair/biosyn-sapbert-ncbi-disease") dictionary = linker.dictionary # find then candidates for the mentions linker.predict(sentence) # print the results for each entity mention: for span in sentence.get_spans(tagger.label_type): print(f"Span: {span.text}") for candidate_label in span.get_labels(linker.label_type): candidate = dictionary[candidate_label.value] print(f"Candidate: {candidate.concept_name}") ``` As an alternative to downloading the already precomputed model (much storage). You can also build the model and compute the embeddings for the dataset using: ```python linker = EntityMentionLinker.build("dmis-lab/biosyn-biobert-ncbi-disease", dictionary_name_or_path="ctd-diseases", hybrid_search=True) ``` This will reduce the download requirements, at the cost of computation.