huseyincenik commited on
Commit
7633c29
·
verified ·
1 Parent(s): 8171496

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -4
README.md CHANGED
@@ -40,9 +40,9 @@ This model has been trained to perform Named Entity Recognition (NER) and is bas
40
 
41
  ## Training and evaluation data
42
  - **Training Dataset**: CoNLL-2003
 
43
  - **Training Evaluation Metrics**:
44
-
45
- - precision recall f1-score support
46
 
47
  B-PER 0.98 0.98 0.98 11273
48
  I-PER 0.98 0.99 0.99 9323
@@ -58,7 +58,7 @@ This model has been trained to perform Named Entity Recognition (NER) and is bas
58
  weighted avg 0.90 0.90 0.89 53190
59
 
60
  - **Validation Evaluation Metrics**:
61
- - precision recall f1-score support
62
 
63
  B-PER 0.97 0.98 0.97 3018
64
  I-PER 0.98 0.98 0.98 2741
@@ -74,7 +74,7 @@ weighted avg 0.90 0.90 0.89 53190
74
  weighted avg 0.90 0.89 0.88 13235
75
 
76
  - **Test Evaluation Metrics**:
77
- - precision recall f1-score support
78
 
79
  B-PER 0.96 0.95 0.96 2714
80
  I-PER 0.98 0.99 0.98 2487
@@ -142,6 +142,7 @@ tokenizer = AutoTokenizer.from_pretrained("huseyincenik/conll_ner_with_bert")
142
  model = AutoModelForTokenClassification.from_pretrained("huseyincenik/conll_ner_with_bert")
143
 
144
  ```
 
145
  Abbreviation|Description
146
  -|-
147
  O|Outside of a named entity
@@ -157,12 +158,14 @@ I-LOC |Location
157
 
158
  ### CoNLL-2003 English Dataset Statistics
159
  This dataset was derived from the Reuters corpus which consists of Reuters news stories. You can read more about how this dataset was created in the CoNLL-2003 paper.
 
160
  #### # of training examples per entity type
161
  Dataset|LOC|MISC|ORG|PER
162
  -|-|-|-|-
163
  Train|7140|3438|6321|6600
164
  Dev|1837|922|1341|1842
165
  Test|1668|702|1661|1617
 
166
  #### # of articles/sentences/tokens per dataset
167
  Dataset |Articles |Sentences |Tokens
168
  -|-|-|-
 
40
 
41
  ## Training and evaluation data
42
  - **Training Dataset**: CoNLL-2003
43
+
44
  - **Training Evaluation Metrics**:
45
+ precision recall f1-score support
 
46
 
47
  B-PER 0.98 0.98 0.98 11273
48
  I-PER 0.98 0.99 0.99 9323
 
58
  weighted avg 0.90 0.90 0.89 53190
59
 
60
  - **Validation Evaluation Metrics**:
61
+ precision recall f1-score support
62
 
63
  B-PER 0.97 0.98 0.97 3018
64
  I-PER 0.98 0.98 0.98 2741
 
74
  weighted avg 0.90 0.89 0.88 13235
75
 
76
  - **Test Evaluation Metrics**:
77
+ precision recall f1-score support
78
 
79
  B-PER 0.96 0.95 0.96 2714
80
  I-PER 0.98 0.99 0.98 2487
 
142
  model = AutoModelForTokenClassification.from_pretrained("huseyincenik/conll_ner_with_bert")
143
 
144
  ```
145
+
146
  Abbreviation|Description
147
  -|-
148
  O|Outside of a named entity
 
158
 
159
  ### CoNLL-2003 English Dataset Statistics
160
  This dataset was derived from the Reuters corpus which consists of Reuters news stories. You can read more about how this dataset was created in the CoNLL-2003 paper.
161
+
162
  #### # of training examples per entity type
163
  Dataset|LOC|MISC|ORG|PER
164
  -|-|-|-|-
165
  Train|7140|3438|6321|6600
166
  Dev|1837|922|1341|1842
167
  Test|1668|702|1661|1617
168
+
169
  #### # of articles/sentences/tokens per dataset
170
  Dataset |Articles |Sentences |Tokens
171
  -|-|-|-