[paths] parser_model = "../models/hu_core_news_lg-parser-0.4.2/model-best" lemmy_model = "../models/lemmy-0.4.2.bin" ner_model = "../models/hu_core_news_lg-ner_merged-0.4.2/model-best" train = null dev = null vectors = null init_tok2vec = null [system] seed = 0 gpu_allocator = null [nlp] lang = "hu" pipeline = ["tok2vec","senter","tagger","morphologizer","lemmatizer","parser","ner"] tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} disabled = [] before_creation = null after_creation = null after_pipeline_creation = null batch_size = 1000 [components] [components.lemmatizer] factory = "hu.lemmatizer" scorer = {"@scorers":"spacy.lemmatizer_scorer.v1"} [components.morphologizer] factory = "morphologizer" extend = false overwrite = true scorer = {"@scorers":"spacy.morphologizer_scorer.v1"} [components.morphologizer.model] @architectures = "spacy.Tagger.v1" nO = null [components.morphologizer.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = 300 upstream = "*" [components.ner] factory = "ner" incorrect_spans_key = null moves = null scorer = {"@scorers":"spacy.ner_scorer.v1"} update_with_oracle_cut_size = 100 [components.ner.model] @architectures = "spacy.TransitionBasedParser.v2" state_type = "ner" extra_state_tokens = false hidden_width = 64 maxout_pieces = 2 use_upper = true nO = null [components.ner.model.tok2vec] @architectures = "spacy.Tok2Vec.v1" [components.ner.model.tok2vec.embed] @architectures = "spacy.MultiHashEmbed.v1" width = 300 attrs = ["LOWER","PREFIX","SUFFIX","SHAPE"] rows = [5000,2500,2500,2500] include_static_vectors = true [components.ner.model.tok2vec.encode] @architectures = "spacy.MaxoutWindowEncoder.v2" width = 300 depth = 4 window_size = 2 maxout_pieces = 5 [components.parser] factory = "parser" learn_tokens = false min_action_freq = 5 moves = null scorer = {"@scorers":"spacy.parser_scorer.v1"} update_with_oracle_cut_size = 100 [components.parser.model] @architectures = "spacy.TransitionBasedParser.v2" state_type = "parser" extra_state_tokens = false hidden_width = 512 maxout_pieces = 3 use_upper = true nO = null [components.parser.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = 300 upstream = "*" [components.senter] factory = "senter" overwrite = false scorer = {"@scorers":"spacy.senter_scorer.v1"} [components.senter.model] @architectures = "spacy.Tagger.v1" nO = null [components.senter.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = 300 upstream = "*" [components.tagger] factory = "tagger" neg_prefix = "!" overwrite = false scorer = {"@scorers":"spacy.tagger_scorer.v1"} [components.tagger.model] @architectures = "spacy.Tagger.v1" nO = null [components.tagger.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = 300 upstream = "*" [components.tok2vec] factory = "tok2vec" [components.tok2vec.model] @architectures = "spacy.Tok2Vec.v1" [components.tok2vec.model.embed] @architectures = "spacy.MultiHashEmbed.v1" width = 300 attrs = ["LOWER","PREFIX","SUFFIX","SHAPE"] rows = [5000,2500,2500,2500] include_static_vectors = true [components.tok2vec.model.encode] @architectures = "spacy.MaxoutWindowEncoder.v2" width = 300 depth = 4 window_size = 2 maxout_pieces = 5 [corpora] [corpora.dev] @readers = "spacy.Corpus.v1" path = ${paths.dev} gold_preproc = false max_length = 0 limit = 0 augmenter = null [corpora.train] @readers = "spacy.Corpus.v1" path = ${paths.train} gold_preproc = false max_length = 0 limit = 0 augmenter = null [training] seed = ${system.seed} gpu_allocator = ${system.gpu_allocator} dropout = 0.1 accumulate_gradient = 1 patience = 1600 max_epochs = 0 max_steps = 20000 eval_frequency = 200 frozen_components = [] annotating_components = [] dev_corpus = "corpora.dev" train_corpus = "corpora.train" before_to_disk = null [training.batcher] @batchers = "spacy.batch_by_words.v1" discard_oversize = false tolerance = 0.2 get_length = null [training.batcher.size] @schedules = "compounding.v1" start = 100 stop = 1000 compound = 1.001 t = 0.0 [training.logger] @loggers = "spacy.ConsoleLogger.v1" progress_bar = false [training.optimizer] @optimizers = "Adam.v1" beta1 = 0.9 beta2 = 0.999 L2_is_weight_decay = true L2 = 0.01 grad_clip = 1.0 use_averages = false eps = 0.00000001 learn_rate = 0.001 [training.score_weights] sents_f = 0.0 sents_p = null sents_r = null tag_acc = 0.26 pos_acc = 0.12 morph_acc = 0.12 morph_per_feat = null dep_uas = 0.12 dep_las = 0.12 dep_las_per_type = null ents_f = 0.26 ents_p = 0.0 ents_r = 0.0 ents_per_type = null [pretraining] [initialize] vectors = ${paths.parser_model} init_tok2vec = ${paths.init_tok2vec} vocab_data = null lookups = null before_init = null after_init = null [initialize.components] [initialize.components.lemmatizer] model_path = ${paths.lemmy_model} [initialize.tokenizer]