LunarLander-v2 initial agent - PPO
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 266.41 +/- 67.67
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d74cbb0e0e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d74cbb0e170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d74cbb0e200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d74cbb0e290>", "_build": "<function ActorCriticPolicy._build at 0x7d74cbb0e320>", "forward": "<function ActorCriticPolicy.forward at 0x7d74cbb0e3b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d74cbb0e440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d74cbb0e4d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d74cbb0e560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d74cbb0e5f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d74cbb0e680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d74cbb0e710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d746d7e5980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1732372928509773825, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNjlTovPIs+QiKGvp6Dr77Ciai9da/7vQAAAAAAAAAAmhkDvYJCpz+2vTq+I6D6vlyoFr1Antu9AAAAAAAAAABmZqC4f822P2a+BLyTg2o+iZyYOw8/QD0AAAAAAAAAAGaOkb1SMbu7ahqGPINujjzHcSc9dkhxvQAAgD8AAIA/WiV0vmp4F70tnHq7cGMlupQlhT5GMac6AACAPwAAgD9K/4i+/26BP8JY1L7Awhm/mGMHv4lRtr4AAAAAAAAAAOBCCT7Gn+U+F0yNvbLUCr+V30M+FtQfvgAAAAAAAAAArfUmvqjDkD/0SBK/ju4nv0e0Ub7kErK+AAAAAAAAAACzRaS9JG6YP3CW7L6EMCi/HZWyvbjcYb4AAAAAAAAAAM3s2jrDNRW6MuGqM4G5ly9aQiY7Yj/EswAAgD8AAIA/mtsfvgXwUj+eH8S9N3wKv8pqfr6qtDG8AAAAAAAAAAAaCx69Sd2zP/PtIL8xC9+9L4uGPH1Mc7wAAAAAAAAAAEB6hD0ZoT4+K+z7vYYjtL592Kw8ZbhUvQAAAAAAAAAAzZMAvbZPjz/FhAe+ZH9Nv/fjrrwq1bg7AAAAAAAAAABriYe+t+ogP/prNj2WwBK/RrPmvk39KT4AAAAAAAAAAGa4/Tw4e7k/g19EP0GXxD62Ms+8dXaRvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHI15/0/W2CMAWyUS+eMAXSUR0CljNNoakyldX2UKGgGR0ByN2q5sj3VaAdLzmgIR0CljNhtLteEdX2UKGgGR0BzkJtMwlByaAdLyWgIR0CljN5Ec81XdX2UKGgGR0Byw3XWe6I4aAdL0mgIR0CljO34bjtHdX2UKGgGR0BzY5pVS4vwaAdNsgJoCEdApYz8ZHd43XV9lChoBkdAcNjrtmcvumgHS8JoCEdApY1K4jKPn3V9lChoBkdAcita9sabWmgHS89oCEdApY3ZXr+o+HV9lChoBkdAcS/CYkVvdmgHS91oCEdApY3pMxoIwHV9lChoBkdAc0ybA1vVE2gHS+doCEdApY42Jxeb/nV9lChoBkdAci2xUNrj52gHS75oCEdApY6JZyMkyHV9lChoBkdAcZ/PE87p3WgHS9loCEdApY6c/lhgE3V9lChoBkdAckshcZ9/jWgHS71oCEdApY6o3rD633V9lChoBkdAbxLqWTot+WgHS7poCEdApY67MmnfmHV9lChoBkdAcneRhc7hemgHS9hoCEdApY6/9ehPCXV9lChoBkdAcMzrc0tRN2gHS7FoCEdApY6/zQNTcnV9lChoBkdAc2UU4rBj4GgHS8JoCEdApY7pl6JIlXV9lChoBkdAcd0X1rZam2gHS7NoCEdApY7sG7jDK3V9lChoBkdAcouwEQoTf2gHS+RoCEdApY8AWk8A73V9lChoBkdAc2Kji4rjHWgHS8poCEdApY8XIMjNZHV9lChoBkdAbu+1PWQOnWgHS9VoCEdApY8ih8IAwXV9lChoBkdAcG6X8fmtAGgHS8NoCEdApY9kbrC3w3V9lChoBkdAc3XOiWVu8GgHS8toCEdApZANqnFYMnV9lChoBkdAcN4amoBJZmgHS8xoCEdApZAhMewLVnV9lChoBkdAWZuq1gH/tWgHTegDaAhHQKWQiEnLJS11fZQoaAZHQHM7KVt4zJpoB0vAaAhHQKWQpBEa2nd1fZQoaAZHQHJclqnFYMhoB0vTaAhHQKWQ7EroW591fZQoaAZHQHIaBGlQ/HJoB0vUaAhHQKWQ+xFAmiR1fZQoaAZHQHFE6m4y44JoB0vAaAhHQKWRAwHqu8t1fZQoaAZHQHJ7jGcWj45oB0vRaAhHQKWRBK8tf5V1fZQoaAZHQHI0PpUxVQ1oB0vUaAhHQKWREKYRdyF1fZQoaAZHQHFICHM2WIJoB0vMaAhHQKWRJhBJI2B1fZQoaAZHQHKP2NWEK3NoB0vPaAhHQKWRQa1kUbl1fZQoaAZHQHM1BEWqLjxoB0vraAhHQKWRTFm4Ajp1fZQoaAZHQHCiFMdtEXtoB0vdaAhHQKWRfAKOT7l1fZQoaAZHQHG4pcxCY1JoB0u9aAhHQKWRe3qiXY11fZQoaAZHQHL7s7p3X7NoB0vnaAhHQKWRnxgiNbV1fZQoaAZHQHPB2zByjpNoB01JAWgIR0Clkb3u/k/9dX2UKGgGR0BwPBepn6EbaAdLzmgIR0Clkjja4+bFdX2UKGgGR0Bycokka/ATaAdL2mgIR0ClkmpSJj2BdX2UKGgGR0Bymybz9S/CaAdLv2gIR0Clkniu+yqudX2UKGgGR0BwVO4BmwqzaAdLymgIR0Clkq6nBLwndX2UKGgGR0BwRgfZElVtaAdLuWgIR0ClktlYEGJOdX2UKGgGR0BxfeqXF98aaAdLtGgIR0ClkuyThYNidX2UKGgGR0BzS8UtZmqYaAdLx2gIR0ClkvVnVXmvdX2UKGgGR0Bx7Gnzg/C7aAdLz2gIR0Clkv0fxMFmdX2UKGgGR0ByF4yP+4smaAdL1mgIR0ClkyAvL5h0dX2UKGgGR0BxHYox59mZaAdL3WgIR0ClkzrU9ZA6dX2UKGgGR0BzUMbKifxuaAdL1WgIR0Clk151/2CedX2UKGgGR0Byk5uhsZYQaAdL0GgIR0Clk4Bpxm03dX2UKGgGR0Bxw0/0NBnjaAdLxmgIR0Clk43vH93sdX2UKGgGR0Bzb5QaaTfSaAdL2GgIR0Clk5VdxAB1dX2UKGgGR0ByQrmDDjzaaAdL9GgIR0Clk5/Ot4iYdX2UKGgGR0Bvsh1A7gbZaAdLw2gIR0Clk6Qc5sCUdX2UKGgGR0ByO9cLSeAeaAdLu2gIR0CllAAjps42dX2UKGgGR0Bv2P1anrIHaAdLuWgIR0CllDWgvlEJdX2UKGgGR0BxhvOs1baAaAdLy2gIR0CllFt4qwyJdX2UKGgGR0ByaUjmjj7zaAdLumgIR0CllLpUYKpldX2UKGgGR0Bwz6phnanKaAdLx2gIR0CllMCKrJbMdX2UKGgGR0BxLldyDIzWaAdL0mgIR0CllPNTDO1OdX2UKGgGR0Bxe8ExIre7aAdLz2gIR0CllPzPa+N+dX2UKGgGR0BvzJyp71IzaAdLxmgIR0CllQt0V8CxdX2UKGgGR0Bx0c0SAYpEaAdLtmgIR0CllUyn+AEudX2UKGgGR0BzyloSL61taAdL1GgIR0CllU+SKWLQdX2UKGgGR0BxXZvKlpGnaAdNGAFoCEdApZVub3Gn43V9lChoBkdAc67hvBJqZmgHS8FoCEdApZV5pFkQPXV9lChoBkdAczkQJ5VwP2gHS99oCEdApZWWU6gdwXV9lChoBkdAcHzEqDsdDWgHS8loCEdApZWmweNkv3V9lChoBkdAcXyQiRnvlWgHS+ZoCEdApZXdMuez2XV9lChoBkdAb1+nR9gF5mgHS+NoCEdApZXhgJC0GHV9lChoBkdAcY7EsJ6Y3WgHS7toCEdApZXo57w8XHV9lChoBkdAcCo/+sHSnmgHS8BoCEdApZZD92ovSXV9lChoBkdAckrNxVAAyWgHS9JoCEdApZZWuFHrhXV9lChoBkdAPl/8l5WzW2gHS5NoCEdApZZ+THKfWnV9lChoBkdAcnEt2s7uD2gHS9RoCEdApZcT4DcM3XV9lChoBkdAcXD0lJHy3GgHS7toCEdApZdcQ9RrJ3V9lChoBkdAcbnoGIKtxWgHS+xoCEdApZdjKDCgsnV9lChoBkdAcMtr+Haew2gHTQgBaAhHQKWXbu2qkuZ1fZQoaAZHQG59mbsniNtoB0vdaAhHQKWXj15B1Ld1fZQoaAZHQHLL16qsEJVoB0vlaAhHQKWXp3EAHVx1fZQoaAZHQHH4v95yEL9oB0vJaAhHQKWXtdEb5uZ1fZQoaAZHQHI5RKDkELZoB0vWaAhHQKWXxeANG3F1fZQoaAZHQHAM/pQk5ZNoB0u7aAhHQKWXy35vcah1fZQoaAZHQHRJcFMZgohoB0vQaAhHQKWYAoESuhd1fZQoaAZHQHGSe7YkE9toB00EAWgIR0ClmBHnMdLhdX2UKGgGR0Bx+uaqjrRjaAdL02gIR0ClmBJ7TlT4dX2UKGgGR0ByTSfra/RFaAdLxmgIR0ClmFIhY/3WdX2UKGgGR0BxWrcL0BfbaAdL0GgIR0ClmH2d3B55dX2UKGgGR0BytomJFb3XaAdL7GgIR0ClmPCfg75mdX2UKGgGR0BxcqJoCdSVaAdLxWgIR0ClmR/q5byIdX2UKGgGR0ByrWeumrKeaAdLu2gIR0ClmVx7iQ1adX2UKGgGR0By4gjfNzKcaAdLvWgIR0ClmYQF1SwXdX2UKGgGR0BwhDhfjS5RaAdL02gIR0ClmZCyY5T7dX2UKGgGR0ByVqOMl1KXaAdL4mgIR0ClmcBHskY5dX2UKGgGR0BOHto8IRh+aAdLg2gIR0ClmeYKx9ofdX2UKGgGR0BxOeXfIjnnaAdLzWgIR0Clme+xwAEMdX2UKGgGR0BxAxOvdM0xaAdLuWgIR0Clmgcm0E5idX2UKGgGR0BxU094eLeiaAdLuWgIR0Clmggt4A0bdX2UKGgGR0ByGmuOjqOcaAdL52gIR0ClmiA5R0lrdX2UKGgGR0ByV0xnFo+OaAdL7mgIR0ClmiUvwmVrdX2UKGgGR0BxWkTYdyT7aAdLzGgIR0ClmiqVyFPBdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c8dbffb170f587157a0eefe71dcd4433c678148d9846ca54ee30a5e2b6c8181
|
3 |
+
size 147896
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7d74cbb0e0e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d74cbb0e170>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d74cbb0e200>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d74cbb0e290>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7d74cbb0e320>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7d74cbb0e3b0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7d74cbb0e440>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d74cbb0e4d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7d74cbb0e560>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d74cbb0e5f0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d74cbb0e680>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7d74cbb0e710>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d746d7e5980>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1507328,
|
25 |
+
"_total_timesteps": 1500000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1732372928509773825,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNjlTovPIs+QiKGvp6Dr77Ciai9da/7vQAAAAAAAAAAmhkDvYJCpz+2vTq+I6D6vlyoFr1Antu9AAAAAAAAAABmZqC4f822P2a+BLyTg2o+iZyYOw8/QD0AAAAAAAAAAGaOkb1SMbu7ahqGPINujjzHcSc9dkhxvQAAgD8AAIA/WiV0vmp4F70tnHq7cGMlupQlhT5GMac6AACAPwAAgD9K/4i+/26BP8JY1L7Awhm/mGMHv4lRtr4AAAAAAAAAAOBCCT7Gn+U+F0yNvbLUCr+V30M+FtQfvgAAAAAAAAAArfUmvqjDkD/0SBK/ju4nv0e0Ub7kErK+AAAAAAAAAACzRaS9JG6YP3CW7L6EMCi/HZWyvbjcYb4AAAAAAAAAAM3s2jrDNRW6MuGqM4G5ly9aQiY7Yj/EswAAgD8AAIA/mtsfvgXwUj+eH8S9N3wKv8pqfr6qtDG8AAAAAAAAAAAaCx69Sd2zP/PtIL8xC9+9L4uGPH1Mc7wAAAAAAAAAAEB6hD0ZoT4+K+z7vYYjtL592Kw8ZbhUvQAAAAAAAAAAzZMAvbZPjz/FhAe+ZH9Nv/fjrrwq1bg7AAAAAAAAAABriYe+t+ogP/prNj2WwBK/RrPmvk39KT4AAAAAAAAAAGa4/Tw4e7k/g19EP0GXxD62Ms+8dXaRvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.004885333333333408,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV5gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHI15/0/W2CMAWyUS+eMAXSUR0CljNNoakyldX2UKGgGR0ByN2q5sj3VaAdLzmgIR0CljNhtLteEdX2UKGgGR0BzkJtMwlByaAdLyWgIR0CljN5Ec81XdX2UKGgGR0Byw3XWe6I4aAdL0mgIR0CljO34bjtHdX2UKGgGR0BzY5pVS4vwaAdNsgJoCEdApYz8ZHd43XV9lChoBkdAcNjrtmcvumgHS8JoCEdApY1K4jKPn3V9lChoBkdAcita9sabWmgHS89oCEdApY3ZXr+o+HV9lChoBkdAcS/CYkVvdmgHS91oCEdApY3pMxoIwHV9lChoBkdAc0ybA1vVE2gHS+doCEdApY42Jxeb/nV9lChoBkdAci2xUNrj52gHS75oCEdApY6JZyMkyHV9lChoBkdAcZ/PE87p3WgHS9loCEdApY6c/lhgE3V9lChoBkdAckshcZ9/jWgHS71oCEdApY6o3rD633V9lChoBkdAbxLqWTot+WgHS7poCEdApY67MmnfmHV9lChoBkdAcneRhc7hemgHS9hoCEdApY6/9ehPCXV9lChoBkdAcMzrc0tRN2gHS7FoCEdApY6/zQNTcnV9lChoBkdAc2UU4rBj4GgHS8JoCEdApY7pl6JIlXV9lChoBkdAcd0X1rZam2gHS7NoCEdApY7sG7jDK3V9lChoBkdAcouwEQoTf2gHS+RoCEdApY8AWk8A73V9lChoBkdAc2Kji4rjHWgHS8poCEdApY8XIMjNZHV9lChoBkdAbu+1PWQOnWgHS9VoCEdApY8ih8IAwXV9lChoBkdAcG6X8fmtAGgHS8NoCEdApY9kbrC3w3V9lChoBkdAc3XOiWVu8GgHS8toCEdApZANqnFYMnV9lChoBkdAcN4amoBJZmgHS8xoCEdApZAhMewLVnV9lChoBkdAWZuq1gH/tWgHTegDaAhHQKWQiEnLJS11fZQoaAZHQHM7KVt4zJpoB0vAaAhHQKWQpBEa2nd1fZQoaAZHQHJclqnFYMhoB0vTaAhHQKWQ7EroW591fZQoaAZHQHIaBGlQ/HJoB0vUaAhHQKWQ+xFAmiR1fZQoaAZHQHFE6m4y44JoB0vAaAhHQKWRAwHqu8t1fZQoaAZHQHJ7jGcWj45oB0vRaAhHQKWRBK8tf5V1fZQoaAZHQHI0PpUxVQ1oB0vUaAhHQKWREKYRdyF1fZQoaAZHQHFICHM2WIJoB0vMaAhHQKWRJhBJI2B1fZQoaAZHQHKP2NWEK3NoB0vPaAhHQKWRQa1kUbl1fZQoaAZHQHM1BEWqLjxoB0vraAhHQKWRTFm4Ajp1fZQoaAZHQHCiFMdtEXtoB0vdaAhHQKWRfAKOT7l1fZQoaAZHQHG4pcxCY1JoB0u9aAhHQKWRe3qiXY11fZQoaAZHQHL7s7p3X7NoB0vnaAhHQKWRnxgiNbV1fZQoaAZHQHPB2zByjpNoB01JAWgIR0Clkb3u/k/9dX2UKGgGR0BwPBepn6EbaAdLzmgIR0Clkjja4+bFdX2UKGgGR0Bycokka/ATaAdL2mgIR0ClkmpSJj2BdX2UKGgGR0Bymybz9S/CaAdLv2gIR0Clkniu+yqudX2UKGgGR0BwVO4BmwqzaAdLymgIR0Clkq6nBLwndX2UKGgGR0BwRgfZElVtaAdLuWgIR0ClktlYEGJOdX2UKGgGR0BxfeqXF98aaAdLtGgIR0ClkuyThYNidX2UKGgGR0BzS8UtZmqYaAdLx2gIR0ClkvVnVXmvdX2UKGgGR0Bx7Gnzg/C7aAdLz2gIR0Clkv0fxMFmdX2UKGgGR0ByF4yP+4smaAdL1mgIR0ClkyAvL5h0dX2UKGgGR0BxHYox59mZaAdL3WgIR0ClkzrU9ZA6dX2UKGgGR0BzUMbKifxuaAdL1WgIR0Clk151/2CedX2UKGgGR0Byk5uhsZYQaAdL0GgIR0Clk4Bpxm03dX2UKGgGR0Bxw0/0NBnjaAdLxmgIR0Clk43vH93sdX2UKGgGR0Bzb5QaaTfSaAdL2GgIR0Clk5VdxAB1dX2UKGgGR0ByQrmDDjzaaAdL9GgIR0Clk5/Ot4iYdX2UKGgGR0Bvsh1A7gbZaAdLw2gIR0Clk6Qc5sCUdX2UKGgGR0ByO9cLSeAeaAdLu2gIR0CllAAjps42dX2UKGgGR0Bv2P1anrIHaAdLuWgIR0CllDWgvlEJdX2UKGgGR0BxhvOs1baAaAdLy2gIR0CllFt4qwyJdX2UKGgGR0ByaUjmjj7zaAdLumgIR0CllLpUYKpldX2UKGgGR0Bwz6phnanKaAdLx2gIR0CllMCKrJbMdX2UKGgGR0BxLldyDIzWaAdL0mgIR0CllPNTDO1OdX2UKGgGR0Bxe8ExIre7aAdLz2gIR0CllPzPa+N+dX2UKGgGR0BvzJyp71IzaAdLxmgIR0CllQt0V8CxdX2UKGgGR0Bx0c0SAYpEaAdLtmgIR0CllUyn+AEudX2UKGgGR0BzyloSL61taAdL1GgIR0CllU+SKWLQdX2UKGgGR0BxXZvKlpGnaAdNGAFoCEdApZVub3Gn43V9lChoBkdAc67hvBJqZmgHS8FoCEdApZV5pFkQPXV9lChoBkdAczkQJ5VwP2gHS99oCEdApZWWU6gdwXV9lChoBkdAcHzEqDsdDWgHS8loCEdApZWmweNkv3V9lChoBkdAcXyQiRnvlWgHS+ZoCEdApZXdMuez2XV9lChoBkdAb1+nR9gF5mgHS+NoCEdApZXhgJC0GHV9lChoBkdAcY7EsJ6Y3WgHS7toCEdApZXo57w8XHV9lChoBkdAcCo/+sHSnmgHS8BoCEdApZZD92ovSXV9lChoBkdAckrNxVAAyWgHS9JoCEdApZZWuFHrhXV9lChoBkdAPl/8l5WzW2gHS5NoCEdApZZ+THKfWnV9lChoBkdAcnEt2s7uD2gHS9RoCEdApZcT4DcM3XV9lChoBkdAcXD0lJHy3GgHS7toCEdApZdcQ9RrJ3V9lChoBkdAcbnoGIKtxWgHS+xoCEdApZdjKDCgsnV9lChoBkdAcMtr+Haew2gHTQgBaAhHQKWXbu2qkuZ1fZQoaAZHQG59mbsniNtoB0vdaAhHQKWXj15B1Ld1fZQoaAZHQHLL16qsEJVoB0vlaAhHQKWXp3EAHVx1fZQoaAZHQHH4v95yEL9oB0vJaAhHQKWXtdEb5uZ1fZQoaAZHQHI5RKDkELZoB0vWaAhHQKWXxeANG3F1fZQoaAZHQHAM/pQk5ZNoB0u7aAhHQKWXy35vcah1fZQoaAZHQHRJcFMZgohoB0vQaAhHQKWYAoESuhd1fZQoaAZHQHGSe7YkE9toB00EAWgIR0ClmBHnMdLhdX2UKGgGR0Bx+uaqjrRjaAdL02gIR0ClmBJ7TlT4dX2UKGgGR0ByTSfra/RFaAdLxmgIR0ClmFIhY/3WdX2UKGgGR0BxWrcL0BfbaAdL0GgIR0ClmH2d3B55dX2UKGgGR0BytomJFb3XaAdL7GgIR0ClmPCfg75mdX2UKGgGR0BxcqJoCdSVaAdLxWgIR0ClmR/q5byIdX2UKGgGR0ByrWeumrKeaAdLu2gIR0ClmVx7iQ1adX2UKGgGR0By4gjfNzKcaAdLvWgIR0ClmYQF1SwXdX2UKGgGR0BwhDhfjS5RaAdL02gIR0ClmZCyY5T7dX2UKGgGR0ByVqOMl1KXaAdL4mgIR0ClmcBHskY5dX2UKGgGR0BOHto8IRh+aAdLg2gIR0ClmeYKx9ofdX2UKGgGR0BxOeXfIjnnaAdLzWgIR0Clme+xwAEMdX2UKGgGR0BxAxOvdM0xaAdLuWgIR0Clmgcm0E5idX2UKGgGR0BxU094eLeiaAdLuWgIR0Clmggt4A0bdX2UKGgGR0ByGmuOjqOcaAdL52gIR0ClmiA5R0lrdX2UKGgGR0ByV0xnFo+OaAdL7mgIR0ClmiUvwmVrdX2UKGgGR0BxWkTYdyT7aAdLzGgIR0ClmiqVyFPBdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 368,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 32,
|
87 |
+
"n_epochs": 8,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bdebc83275ea9c65cd30273de31e99f4f4e8ce8a64b58012ffa1b67c19af294
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99f3d6bc2aa1b39bab5ca903a9744a5beed3b9413a1a2b872bc82fe4f682c345
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (165 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 266.4082897907771, "std_reward": 67.67462035999533, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-11-23T15:30:47.690118"}
|