File size: 8,892 Bytes
77fb417 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# MIT License
# Copyright (c) 2024 Hustcw
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import torch
import torch.utils.checkpoint
from torch import nn
from typing import Optional
import torch.nn.functional as F
from transformers.models.roformer.modeling_roformer import (
RoFormerEmbeddings,
RoFormerModel,
RoFormerEncoder,
RoFormerLayer,
RoFormerAttention,
RoFormerIntermediate,
RoFormerOutput,
RoFormerSelfAttention,
RoFormerPreTrainedModel
)
from transformers.models.mpnet.modeling_mpnet import MPNetModel
from transformers import MPNetTokenizerFast, BatchEncoding
class AsmTokenizer(MPNetTokenizerFast):
@property
def pad_token_type_id(self) -> int:
"""
`int`: Id of the padding token type in the vocabulary.
"""
return self.pad_token_id
def tokenize_function(self, function):
total_len = 0
tokenized_functions = {"token": [], "instr": []}
for key, value in function.items():
tokens = self.tokenize(value.replace(',', ''), max_length=20, truncation=True, add_special_tokens=False) # set max token for a instruction
instr_index = "INSTR" + key
instructions = [instr_index] * len(tokens)
tokenized_functions["token"].extend(tokens)
tokenized_functions["instr"].extend(instructions)
total_len += len(tokens)
if total_len > self.model_max_length:
tokenized_functions['token'] = tokenized_functions['token'][:self.model_max_length]
tokenized_functions['instr'] = tokenized_functions['instr'][:self.model_max_length]
break
return tokenized_functions
def encode_function(self, function):
tokenized_functions = self.tokenize_function(function)
token_ids = self.convert_tokens_to_ids(tokenized_functions["token"])
instr_ids = self.convert_tokens_to_ids(tokenized_functions["instr"])
return BatchEncoding({
"input_ids": token_ids,
"attention_mask": [1] * len(token_ids),
"token_type_ids": instr_ids,
})
@property
def vocab_size(self) -> int:
return len(self.vocab)
class JRoFormerEmbeddings(RoFormerEmbeddings):
"""Construct the embeddings from word and token_type embeddings."""
def __init__(self, config):
super().__init__(config)
self.word_embeddings = nn.Embedding(
config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id
)
self.token_type_embeddings = self.word_embeddings
class JRoFormerSelfAttention(RoFormerSelfAttention):
def __init__(self, config):
super().__init__(config)
self.query = nn.Linear(
config.hidden_size, self.all_head_size, bias=config.use_bias
)
self.key = nn.Linear(
config.hidden_size, self.all_head_size, bias=config.use_bias
)
self.value = nn.Linear(
config.hidden_size, self.all_head_size, bias=config.use_bias
)
class JRoFormerAttention(RoFormerAttention):
def __init__(self, config):
super().__init__(config)
self.self = JRoFormerSelfAttention(config)
class JRoFormerLayer(RoFormerLayer):
def __init__(self, config):
super().__init__(config)
self.attention = JRoFormerAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(
f"{self} should be used as a decoder model if cross attention is added"
)
self.crossattention = RoFormerAttention(config)
self.intermediate = RoFormerIntermediate(config)
self.output = RoFormerOutput(config)
class JRoFormerEncoder(RoFormerEncoder):
def __init__(self, config):
super().__init__(config)
self.layer = nn.ModuleList(
[JRoFormerLayer(config) for _ in range(config.num_hidden_layers)]
)
class JRoFormerModel(RoFormerModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = JRoFormerEmbeddings(config)
if config.embedding_size != config.hidden_size:
self.embeddings_project = nn.Linear(
config.embedding_size, config.hidden_size
)
self.encoder = JRoFormerEncoder(config)
# Initialize weights and apply final processing
self.post_init()
class AsmEncoder(RoFormerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.jroformer = JRoFormerModel(config)
self.projection = nn.Linear(config.hidden_size, config.hidden_size)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.jroformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
token_embeddings = outputs[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).to(token_embeddings.dtype)
asm_embedding = torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
asm_embedding = self.projection(asm_embedding)
asm_embedding = F.normalize(asm_embedding, p=2, dim=1)
return asm_embedding
class TextEncoder(MPNetModel):
def __init__(self, config, add_pooling_layer=True):
super().__init__(config, add_pooling_layer=add_pooling_layer)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
):
output = super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs,
)
token_embeddings = output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
text_embedding = torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
text_embedding = F.normalize(text_embedding, p=2, dim=1)
return text_embedding |