hustcw commited on
Commit
620f4be
1 Parent(s): 1699dd0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -59,7 +59,7 @@ text_encoder = AutoModel.from_pretrained("hustcw/clap-text", trust_remote_code=T
59
 
60
  ```python
61
  with open("./CaseStudy/bubblesort.json") as fp:
62
- asm = json.load(fp)
63
  ```
64
 
65
  2. Define your classification prompts:
@@ -88,7 +88,7 @@ preds = torch.softmax(logits / 0.07, dim=1).squeeze(0).tolist()
88
 
89
  # Output predictions
90
  for i, prompt in enumerate(prompts):
91
- print(f"Probability: {preds[i]*100:.3f}%, Text: {prompt}")
92
  ```
93
 
94
  Repeat the process for any other classification tasks you want, such as malware classification and cryptographic algorithm identification, by loading the respective datasets and defining the relevant natural language prompts.
 
59
 
60
  ```python
61
  with open("./CaseStudy/bubblesort.json") as fp:
62
+ asm = json.load(fp)
63
  ```
64
 
65
  2. Define your classification prompts:
 
88
 
89
  # Output predictions
90
  for i, prompt in enumerate(prompts):
91
+ print(f"Probability: {preds[i]*100:.3f}%, Text: {prompt}")
92
  ```
93
 
94
  Repeat the process for any other classification tasks you want, such as malware classification and cryptographic algorithm identification, by loading the respective datasets and defining the relevant natural language prompts.