File size: 1,894 Bytes
4f9d08d 1f23e1d 4f9d08d 1f23e1d 4f9d08d 1f23e1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
language:
- zh
widget:
- text: 沪指收报3233.67点,涨0.15%,成交额3772亿元
- text: 中国5月新增社融和新增人民币贷款均较去年同期下降,社融新增1.56万亿元,居民中长期贷款增加1684亿元,居民存款增加5364亿元,M2-M1剪刀差缩窄
- text: 人民币兑美元中间价报7.1498,下调286点
- text: 发改委等八部门:支持符合条件的产教融合型企业上市融资
tags:
- generated_from_trainer
- finance
metrics:
- accuracy
model-index:
- name: bert-base-chinese-finetuning-financial-news-sentiment-test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-chinese-finetuning-financial-news-sentiment-test
This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7692
- Accuracy: 0.7964
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 250 | 0.6425 | 0.7660 |
| 0.4822 | 2.0 | 500 | 0.7692 | 0.7964 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.0
- Tokenizers 0.13.3 |