ppo-LunarLander-v2 / config.json
hythyt's picture
ppo LunarLander-v2 trained agent
63486e6 verified
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bd8c1dcc820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bd8c1dcc8b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bd8c1dcc940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bd8c1dcc9d0>", "_build": "<function ActorCriticPolicy._build at 0x7bd8c1dcca60>", "forward": "<function ActorCriticPolicy.forward at 0x7bd8c1dccaf0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bd8c1dccb80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bd8c1dccc10>", "_predict": "<function ActorCriticPolicy._predict at 0x7bd8c1dccca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bd8c1dccd30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bd8c1dccdc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bd8c1dcce50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bd8c1f6d180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1707934897128036491, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABx/j2kXzm78///uy4Iqzmwa228cCD/OgAAAAAAAIA/LeIavuJ6kD8x2cm+oLTNvrcacL5TEei9AAAAAAAAAAAzeXG8XB/hPtD0ebwi/p2+vRABvc4mbL0AAAAAAAAAAFoYLz4RpCs+hRlWvjcAXb7GyIk8HeLtOQAAAAAAAAAAWu3aPRt9uj/OIjs/beHcvFHuDb0m+ro9AAAAAAAAAABj1oQ+e7pnP+frED6X+My+3SsrPj0uc7wAAAAAAAAAALOokT1psQS8ENyZvaYiyrx7ukM97ZRbPgAAgD8AAIA/EyWgPnr+GT/BoUA9kTW/vsgKNj5Ly+69AAAAAAAAAAAaxTg9T1YYvCSlSrxt+hY9voyCvRqJ8z0AAIA/AACAP80yvDwcWns9t98KvuLRYL7rEgy9iFf6PAAAAAAAAAAADcSVPeEInbojdCA6UcU2trJUr7qZSTi5AAAAAAAAgD8a1Ao9SEvtug53NL2GsaY8CW8VPBtfj70AAIA/AACAP4oGhL4QKpE+qXy4Ppbpg75n+oC8xpc5PgAAAAAAAAAAWkuHPeWB6z7+8Oy8w6e3vrxMWjy62J29AAAAAAAAAABNxqk9DQtCPn5vGL4DO4K++lQvvBSqGTwAAAAAAAAAAE1/NT0pWBO6IkmNOMQpsLLKJqq7hk2ltwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHI6SauwHJOMAWyUTQsBjAF0lEdAkLq7kXDWLHV9lChoBkdAbS2LgGbCrWgHS/9oCEdAkLsF7Uoa1nV9lChoBkdAcCjhK15SnGgHS/loCEdAkLsTzErGznV9lChoBkdAb5Co4MnZ02gHTSMBaAhHQJC7Hx9XtBx1fZQoaAZHQG/Vcclw97poB00dAWgIR0CQvCOx0MgEdX2UKGgGR0Bw3YEA5q/NaAdL9GgIR0CQvI065oXbdX2UKGgGR0BwrS9Htnf3aAdL9mgIR0CQvmW912aEdX2UKGgGR0ByH9QemvW6aAdNjwFoCEdAkL+XryDqW3V9lChoBkdAbwALMLWqcWgHS/9oCEdAkL+qZ2IO6XV9lChoBkdAcLf5E+gUUWgHTRABaAhHQJC/8lJHy3F1fZQoaAZHQG8MX5eqrBFoB00PAWgIR0CQwA0tyxRmdX2UKGgGR0Bwh15ooNNKaAdNBgFoCEdAkMCAWSEDhnV9lChoBkdAbXbMUypJgGgHTQkBaAhHQJDBZimVJMB1fZQoaAZHQG68Jpvgm7doB00fAWgIR0CQwetQKrq/dX2UKGgGR0BvTg3T/hl2aAdNAwFoCEdAkMI7mEGqxXV9lChoBkdAcxKrjHXEqGgHTTEBaAhHQJDCkir1dxB1fZQoaAZHQG699nCfpUxoB00qAWgIR0CQwtN0NjLCdX2UKGgGR0BxOXG6wt8NaAdNHAFoCEdAkMMG9xp+MXV9lChoBkdAb3NAuZkTYmgHTTcBaAhHQJDDUI+nqFB1fZQoaAZHQHBlFfJFLFpoB00vAWgIR0CQw2384xUOdX2UKGgGR0ByzvzUZvUCaAdL/mgIR0CQw7hcZ9/jdX2UKGgGR0BxQGO801qGaAdNLAFoCEdAkMRkJng5znV9lChoBkdAcJ0uEmICVGgHS/xoCEdAkMVPPLPldXV9lChoBkdAbyDD2rXDnGgHS/doCEdAkMYcGorFwXV9lChoBkdAcDeoHcDbJ2gHS/loCEdAkMcH0kGA1HV9lChoBkdAcVDyckMTe2gHTRoBaAhHQJDHkPBi1At1fZQoaAZHQHEWV2A5JbtoB00vAWgIR0CQx+cebNKRdX2UKGgGR0Bxj2uW8h9taAdNFwFoCEdAkMj8MNMGo3V9lChoBkdAcXoCO3lS0mgHTREBaAhHQJDKEV6/qPh1fZQoaAZHQHHO7ayrxRVoB00JAWgIR0CQyhqaw2VFdX2UKGgGR0BzUdxHXmNjaAdNMgFoCEdAkMpm+wkgOnV9lChoBkdAchSY6nzg/GgHTXkBaAhHQJDKhaTwDvF1fZQoaAZHQHKGHuVopQVoB00vAWgIR0CQyp3jdYW+dX2UKGgGR0ByTtloUSIyaAdNAwFoCEdAkMqrKaG5+nV9lChoBkdAc6Z3XZoPCmgHS/ZoCEdAkMqys0YTCnV9lChoBkdAc3Edld1Md2gHTSQBaAhHQJDLAYQ8OkN1fZQoaAZHQG58VbiZOSJoB0v4aAhHQJDLVRCQcPx1fZQoaAZHQHH3jtXxOL1oB008AWgIR0CQy75S3soldX2UKGgGR0BxWSNKh+OPaAdNCQFoCEdAkMyLwBo243V9lChoBkdAcYqi7TUiIWgHTRIBaAhHQJDNjAP/aQF1fZQoaAZHQHDnubZvkzZoB00SAWgIR0CQzvVBD5TIdX2UKGgGR0ByxCYRdyDJaAdNSAFoCEdAkNAf4REncHV9lChoBkdAcTK5nUUfxWgHTS8BaAhHQJDQLFqBVdZ1fZQoaAZHQHI0wtapxWFoB00QAWgIR0CQ5AiR4hUzdX2UKGgGR0ByQwmBvrGBaAdL/mgIR0CQ5EzoEB8ydX2UKGgGR0BwxLwZwXImaAdL9WgIR0CQ5Ido371qdX2UKGgGR0BvjJaJQ+EAaAdNJwFoCEdAkOTte+mFanV9lChoBkdAcZE4i5d4V2gHTSYBaAhHQJDlAOiFj/d1fZQoaAZHQHKGh5X2dupoB01bAWgIR0CQ5Qn6VMVUdX2UKGgGR0BytSO+7Dl6aAdNKQFoCEdAkOUxNVR1o3V9lChoBkdAcVRIOYplSWgHTQgBaAhHQJDlvjABT4t1fZQoaAZHQHBpfP9kz41oB01UAWgIR0CQ5eCvX9R8dX2UKGgGR0ByLAGY8dPtaAdNRgFoCEdAkOYPmLcbi3V9lChoBkdAcZ/XbM5fdGgHTRMBaAhHQJDnA7bL2Yh1fZQoaAZHQG5REm6XjVBoB00iAWgIR0CQ6iuCwr1/dX2UKGgGR0BwnXh2nsLOaAdNAQFoCEdAkOpLrHEMs3V9lChoBkdAbge0F8ohIWgHTQ0BaAhHQJDquBYmsvJ1fZQoaAZHQHCmnhKlHjJoB00AAmgIR0CQ6vpG4I8hdX2UKGgGR0Bw1/v/io87aAdL+GgIR0CQ67upCKJmdX2UKGgGR0Bva0xM36yjaAdNEQFoCEdAkOw5hBqsVHV9lChoBkdAbweNqgyuZGgHTRcBaAhHQJDtdYaHbh51fZQoaAZHQG7BcUEgW8BoB00iAWgIR0CQ7ciKziS8dX2UKGgGR0ByRGMFUyYYaAdNHwFoCEdAkO3YYNy5qnV9lChoBkdAcfb9P1tfomgHTS4BaAhHQJDuDwWnCO51fZQoaAZHQHE83TiKiwloB00WAWgIR0CQ7kYjSofkdX2UKGgGR0BygzDFZPl/aAdNTQFoCEdAkO6Q6U7jk3V9lChoBkdAcZwKjSG8EmgHS/toCEdAkO6kV8CxNnV9lChoBkdAcFAWmxdIG2gHTSQBaAhHQJDux0W/JvJ1fZQoaAZHQHEytl7MPjJoB030AWgIR0CQ7vLgGbCrdX2UKGgGR0ByVES7GvOhaAdNQQFoCEdAkO8kuYhManV9lChoBkdAcDMlJYkmhWgHTREBaAhHQJDxygSOBDp1fZQoaAZHQHAnnEhq0t1oB00oAWgIR0CQ8l2ycCo1dX2UKGgGR0BwsjrxAjY7aAdNIgFoCEdAkPK2za9K3HV9lChoBkdAcZt82aUiZGgHTSABaAhHQJDy6QJXyRV1fZQoaAZHQHHBe9alk6NoB00FAWgIR0CQ8ubAk9lmdX2UKGgGR0BwthQZXMhYaAdNEAFoCEdAkPOzJhfBvnV9lChoBkdAcKr5BC2MKmgHS/FoCEdAkPPYr8R+SnV9lChoBkdAcNgsLfDUE2gHS/toCEdAkPTrr9l2/3V9lChoBkdAcKbG9YfW+WgHS/VoCEdAkPWVdLQHA3V9lChoBkdAc0ZIZ62OQ2gHTSQBaAhHQJD1onkT6BR1fZQoaAZHQG2b2tEG7jFoB00bAWgIR0CQ9kjwx33YdX2UKGgGR0BwXfXxvvSdaAdNGgFoCEdAkPZ2D+R5knV9lChoBkdAcEr4aP0ZnGgHTSQBaAhHQJD2gXEZR9B1fZQoaAZHQHKIGWpqASZoB00PAWgIR0CQ9qdlNDc/dX2UKGgGR0ByKW7yxzJZaAdNUgFoCEdAkPcBLf1pTXV9lChoBkdAbt0Sg5BC2WgHS/NoCEdAkPisAvL5h3V9lChoBkdAcgMaKUFB6mgHS+VoCEdAkPlRt1p0wXV9lChoBkdAc7DNLlFMI2gHS/1oCEdAkPmEz9CNTHV9lChoBkdAcholNDc/MWgHTQsBaAhHQJD6OSkj5bh1fZQoaAZHQHCk2vfTCtRoB03VAWgIR0CQ+tdzXBgvdX2UKGgGR0BwLcE1VHWjaAdNEgFoCEdAkPt8j3VTaXV9lChoBkdAcIPyzXz19WgHS+toCEdAkPuahlDneXV9lChoBkdAUAa6MBIWg2gHS8doCEdAkPwZSm65G3V9lChoBkdASCj4gzP8h2gHS8JoCEdAkPwgnhKlHnV9lChoBkdAciUowEhaDGgHTRABaAhHQJD9QHE/B311fZQoaAZHQHBSVZs9B8hoB00TAWgIR0CQ/WI8hcJMdX2UKGgGR0ByXpcbBGhFaAdNGAFoCEdAkP4YEB8x9HV9lChoBkdAceIfMOf/WGgHTXcBaAhHQJD+Zs+FDfF1fZQoaAZHQHHHJeJHiFVoB00wAWgIR0CQ/3hM8HObdX2UKGgGR0BxouLzf779aAdNzQFoCEdAkP/mG7Bfr3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}