ppo-LunarLander-v2 / config.json
hyunussarioglu's picture
Upload PPO LunarLander-v2 trained agent
1b313ad
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e72669141f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e7266914280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e7266914310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e72669143a0>", "_build": "<function ActorCriticPolicy._build at 0x7e7266914430>", "forward": "<function ActorCriticPolicy.forward at 0x7e72669144c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e7266914550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e72669145e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e7266914670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e7266914700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e7266914790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e7266914820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e7266911200>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689444788062263873, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMnYjx7Jp66/rXbtBzre7Bhi8K6DvwkNAAAgD8AAIA/+gBCPgEMobyRgJM7a+UCutOWDb7OpNi6AACAPwAAgD/tZAo+CnsEPO3jEb57fbC8P+mSPQQjpb0AAIA/AACAP8C42r0e0FU/qh8tvoAeCr/OqKC9vyGYPQAAAAAAAAAAE5g6vk96e7xI89C7lIMjulDV3D3WswM7AACAPwAAgD8AKVU9SOeQuqqVJzipAxwzi59cOu5qQrcAAIA/AACAP1oPDL5WFEk/anVvvT0WG78GsG69/zQPPQAAAAAAAAAAgOplPeY/rz+gDMU+OrycvotebT1OIgU+AAAAAAAAAACAMSi9XGkcPoZPJ72aeIW+KCNFvRpppjwAAAAAAAAAAFO3Oj5oJ6m8UAH8O4vLiLpnyhi+7k9UuwAAgD8AAIA/ADkzPVjbvj9rmbo+B/dDPi8RujsoUxE+AAAAAAAAAAAGbRG++72+PjSTiz0Enpe+7ej1vOAAmz0AAAAAAAAAADMeY717yoG6HTMjs+H3My+Izme6uwnTMwAAgD8AAIA/jaeHPnKWqT614Pw8c/q/vg+h+j1rzg69AAAAAAAAAADgzgi+tYuQPloirj3T4YG+KAzFu+2fUDwAAAAAAAAAAJpaTz5sxui7W1Y0vjtjrb3EgUm9hUPAvgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/QYHoouwqMAWyUS8WMAXSUR0Cf1rqtozvadX2UKGgGR0BvCLhxYJVsaAdL6mgIR0Cf1xQ+2VmjdX2UKGgGR0BwXoIfKZDzaAdL0WgIR0Cf1yWAf+0gdX2UKGgGR0BvFx3mmtQsaAdL4WgIR0Cf1zPaL4vfdX2UKGgGR0BwXKRkmQbNaAdNFAFoCEdAn9hLMHKOk3V9lChoBkdAcSK2JBPbf2gHTRQBaAhHQJ/ZDQb+98J1fZQoaAZHQHFR2smv4dpoB0v6aAhHQJ/cA1AJLM91fZQoaAZHQHBLmXb/Ot5oB00JAWgIR0Cf3LTfR/mUdX2UKGgGR0BvjzxVhkRSaAdL2mgIR0Cf3OwYcebNdX2UKGgGR0Bx1RdgOSW7aAdL6GgIR0Cf4FVHnU2DdX2UKGgGR0Bgxlh9b5doaAdN6ANoCEdAn+Hwob4rSXV9lChoBkdAcBHlk6Lfk2gHS+hoCEdAn+J5XyRSxnV9lChoBkdAcD15T6zmfWgHTQkBaAhHQJ/jNPHktEp1fZQoaAZHQHIVclw97nhoB0v4aAhHQJ/jTiR4hU11fZQoaAZHQHEhvUaya/hoB0v6aAhHQJ/j6GXXyy51fZQoaAZHQHBy3fyf+S9oB0vpaAhHQJ/mHh3qzJJ1fZQoaAZHQHCtl3IMjNZoB0vWaAhHQJ/on6k69011fZQoaAZHQG/oee4Cp3poB0vVaAhHQJ/pR2ll9Sd1fZQoaAZHQHHnSS3b215oB0vxaAhHQJ/rSlxffGd1fZQoaAZHQHNYupjtoi9oB02IAWgIR0Cf7JQ7cO9WdX2UKGgGR0BxgwRvm5lOaAdL7mgIR0Cf7+kDIRywdX2UKGgGR0Bv+CCL/CIlaAdL2mgIR0Cf7/pOvdM1dX2UKGgGR0BwktxEORT1aAdL52gIR0Cf7/os7MgVdX2UKGgGR0BkIFvQ4S6EaAdN6ANoCEdAn/EJM10knnV9lChoBkdAcHrlLeyiVWgHTQkBaAhHQJ/ygKArhBJ1fZQoaAZHQG16z0HyEtdoB0vJaAhHQJ/zQczZYgd1fZQoaAZHQHGmihakhzNoB0vFaAhHQJ/zia/h2nt1fZQoaAZHQFwwZL7GecxoB03oA2gIR0Cf9XahHskZdX2UKGgGR0BwWsL7XQMQaAdL52gIR0Cf9nRbbDdhdX2UKGgGR0Bgh+az/p+uaAdN6ANoCEdAn/c0/4ZdfXV9lChoBkdARsPLzPKMemgHS7NoCEdAn/ektdzGP3V9lChoBkdAcTIuKoAGS2gHS8toCEdAn/h83qAz6HV9lChoBkdAce/xkNFz+2gHTQsBaAhHQJ/4pkjHGS91fZQoaAZHQG6xbSy+pOxoB0vraAhHQJ/5wjqv/zd1fZQoaAZHQHGu1Cw8nu1oB0vUaAhHQJ/526qbSZ11fZQoaAZHQHBmTHCGetloB0veaAhHQJ/8o8lolD51fZQoaAZHQHL4quB+WnloB0vzaAhHQJ/9TFId2gZ1fZQoaAZHQHC4gJswco9oB0vJaAhHQJ/9nwKBuoB1fZQoaAZHQHJvDp9qk/NoB00YAWgIR0Cf/i7r9l3AdX2UKGgGR0BulxFocrAhaAdL1mgIR0Cf/xnndO6/dX2UKGgGR0BxhqEsasIWaAdL3mgIR0CgABmGmDUWdX2UKGgGR0BxRUJ2MbWFaAdL4WgIR0CgAGAskIHDdX2UKGgGR0By2PAgxJumaAdL7WgIR0CgARIKD017dX2UKGgGR0BwO6CPIXCTaAdL0mgIR0CgATRGDtgKdX2UKGgGR0Bxdjxsl9jPaAdL82gIR0CgAgGCZnctdX2UKGgGR0BwpaUfPompaAdLzWgIR0CgA4mVzIV/dX2UKGgGR0BgSI5o4+8oaAdN6ANoCEdAoAOjuQZGa3V9lChoBkdAcPNWGyon8mgHS9FoCEdAoAQxqfvnbXV9lChoBkdAYjylYU34sWgHTegDaAhHQKAEXhsImgJ1fZQoaAZHQHIAHgpBomJoB00EAWgIR0CgBIYNRWLhdX2UKGgGR0Bw8RJQLux9aAdNHAFoCEdAoASRzgdfcHV9lChoBkdAcuTQdS2phmgHTSYBaAhHQKAFEWE9Mbp1fZQoaAZHQHGVN/e+Eh9oB00DAWgIR0CgBdcQI2OydX2UKGgGR0BvtUHyEtdzaAdL+GgIR0CgBebmlqJudX2UKGgGR0BzWAoXsPataAdL0GgIR0CgBexT850bdX2UKGgGR0BygGmelKsdaAdL8GgIR0CgBl7pV0cPdX2UKGgGR0BicXViF0xNaAdN6ANoCEdAoAd0uzyBkXV9lChoBkdAcpRNZ/0/W2gHTSICaAhHQKAH0LAHmih1fZQoaAZHQEHUQYk3S8doB0vbaAhHQKAIGgam4y51fZQoaAZHQF/3faHsTnJoB03oA2gIR0CgCGSHdoFndX2UKGgGR0ByaENG3F1kaAdNMwFoCEdAoAhzyYoiLXV9lChoBkdAcPK7Z39rGmgHS+loCEdAoAjk2aUiZHV9lChoBkdAcb96ab4Ju2gHS/RoCEdAoAlAGUwBYHV9lChoBkdAYzqoiLVFyGgHTegDaAhHQKAJTKeTV2B1fZQoaAZHQHJYpXdTHbRoB00PAWgIR0CgCWxMnJDFdX2UKGgGR0BK36/yoXKsaAdLyWgIR0CgCZV8CxNZdX2UKGgGR0BvOXhXKbKBaAdL22gIR0CgCcoIOYpldX2UKGgGR0BxjgKOT7l8aAdNFwFoCEdAoAolYU34sXV9lChoBkdAcZyJZW7vomgHTTwBaAhHQKAKWi5d4V11fZQoaAZHQHJcZN9H+ZRoB0vraAhHQKAKe8mrsB11fZQoaAZHQHA1rr9l2/1oB0veaAhHQKALIEFGG211fZQoaAZHQHCr2SpzcRFoB0vRaAhHQKALMlolD4R1fZQoaAZHQHHUEYGdI5JoB0vwaAhHQKAMgdQwbl11fZQoaAZHQHJOGHYYixFoB00XAWgIR0CgDRBjFyaNdX2UKGgGR0BuEFYU34sVaAdL72gIR0CgDS704BFNdX2UKGgGR0BzsRvze40/aAdNDgFoCEdAoA1M72criHV9lChoBkdAbw/Mtbs4UGgHS+poCEdAoA2IrWiDd3V9lChoBkdAcqnARChN/WgHS9doCEdAoA2PWrfce3V9lChoBkdAcSO5Sm65G2gHS/RoCEdAoA2uXb/OuHV9lChoBkdAcG63WFvhqGgHS+xoCEdAoA3CYw7DEXV9lChoBkdAcUHCUornT2gHS95oCEdAoA56+6Ae73V9lChoBkdAcnFFy7wrlWgHS/loCEdAoA6JPj4pMHV9lChoBkdAciIIE8q4IGgHS+FoCEdAoA7Jw6ySm3V9lChoBkdAcPNsGxD9fmgHS/FoCEdAoBBg4uK4x3V9lChoBkdAb8/UnXumamgHTQYBaAhHQKAQzS6UaAF1fZQoaAZHQHIFUJBw++xoB01DAWgIR0CgEUpqIrOJdX2UKGgGR0Bxscd0aIepaAdLwmgIR0CgEa76Hj6vdX2UKGgGR0Bwblp/PPcBaAdL0GgIR0CgEeZPVNHpdX2UKGgGR0BwYzZDiOvMaAdL2mgIR0CgEsTr/sE8dX2UKGgGR0BwyGPFNtZWaAdL42gIR0CgEtLBCUosdX2UKGgGR0BxTbpHI6sAaAdL6mgIR0CgEwhBJI1+dX2UKGgGR0ByRb1XeWOZaAdL1GgIR0CgE7Y7A+INdX2UKGgGR0ByYHaIvalDaAdNUgFoCEdAoBSbG96C2HV9lChoBkdAcJJ+kxh2GWgHS/9oCEdAoBTQ+B6KL3V9lChoBkdAcfS2nsLORmgHS/5oCEdAoBUy15Sm7HV9lChoBkdAcXBQKKHfuWgHTTMBaAhHQKAVQRuCPIZ1fZQoaAZHQHG3NQ9A5aNoB0vTaAhHQKAV0+evpyJ1fZQoaAZHQG67vomois5oB0vcaAhHQKAWPJHy3Ct1fZQoaAZHQHC9v4ubqhVoB0vfaAhHQKAW99rGipN1fZQoaAZHQHHNXcUM5OtoB0v5aAhHQKAXA5ksjFB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}