Text2Text Generation
fastText
English
File size: 920 Bytes
ee3e9cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments
from datasets import load_dataset

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")

dataset = load_dataset('i2ebuddy/website_data', split='train')
dataset = dataset.map(lambda examples: tokenizer(examples['text'], padding="max_length", truncation=True, max_length=512), batched=True)
dataset.set_format(type='torch', columns=['input_ids', 'attention_mask'])

training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="epoch",
    learning_rate=2e-5,
    per_device_train_batch_size=4,
    weight_decay=0.01,
    save_total_limit=3,
    num_train_epochs=3,
    report_to="none"  # do not report to any service for logging
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=dataset
)

trainer.train()