Text2Text Generation
fastText
English
SoulXS2 commited on
Commit
06a6a7a
1 Parent(s): 633b8f2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +79 -2
app.py CHANGED
@@ -1,3 +1,80 @@
1
- import gradio as gr
 
 
 
2
 
3
- gr.load("models/kuttersn/gpt2_chatbot").launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # from docx import Document
2
+ # from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments
3
+ # import torch
4
+ # import gradio as gr
5
 
6
+ # # Load the Word document
7
+ # docx_file_path = "Our Leadership.docx"
8
+ # doc = Document(docx_file_path)
9
+
10
+ # # Extract text from the document
11
+ # text = ""
12
+ # for paragraph in doc.paragraphs:
13
+ # text += paragraph.text + "\n"
14
+
15
+ # # Save the extracted text to a text file
16
+ # txt_file_path = "extracted_text.txt"
17
+ # with open(txt_file_path, "w", encoding="utf-8") as file:
18
+ # file.write(text)
19
+
20
+ # # Load the pre-trained GPT-2 model and tokenizer
21
+ # tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
22
+ # model = GPT2LMHeadModel.from_pretrained("gpt2")
23
+
24
+ # # Tokenize the training data
25
+ # input_ids = tokenizer(text, return_tensors="pt", padding=True, truncation=True)["input_ids"]
26
+
27
+ # # Define the training arguments
28
+ # training_args = TrainingArguments(
29
+ # per_device_train_batch_size=4,
30
+ # num_train_epochs=3,
31
+ # logging_dir='./logs',
32
+ # )
33
+
34
+ # # Define a dummy data collator (required by Trainer)
35
+ # class DummyDataCollator:
36
+ # def __call__(self, features):
37
+ # return features
38
+
39
+ # # Define a Trainer instance
40
+ # trainer = Trainer(
41
+ # model=model,
42
+ # args=training_args,
43
+ # data_collator=DummyDataCollator(),
44
+ # train_dataset=input_ids
45
+ # )
46
+
47
+ # # Train the model
48
+ # trainer.train()
49
+
50
+ # # Define the chatbot function
51
+ # def chatbot(input_text):
52
+ # # Tokenize input text
53
+ # input_ids = tokenizer.encode(input_text, return_tensors="pt")
54
+
55
+ # # Generate response from the model
56
+ # output_ids = model.generate(input_ids, max_length=50, pad_token_id=tokenizer.eos_token_id)
57
+
58
+ # # Decode the generated response
59
+ # response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
60
+
61
+ # return response
62
+
63
+ # # Create the Gradio interface
64
+ # chatbot_interface = gr.Interface(chatbot, "textbox", "textbox", title="Chatbot")
65
+
66
+ # # Launch the Gradio interface
67
+ # chatbot_interface.launch()
68
+
69
+
70
+ import os
71
+
72
+ # Get the current working directory
73
+ current_directory = os.getcwd()
74
+
75
+ # Construct the full file path
76
+ docx_file_name = "Our Leadership.docx"
77
+ full_file_path = os.path.join(current_directory, docx_file_name)
78
+
79
+ # Print the file path
80
+ print("File path:", full_file_path)