--- library_name: transformers license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-jap tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: sattu-finetuned-kde4-en-to-jap results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-ja split: train args: en-ja metrics: - name: Bleu type: bleu value: 20.727494887708588 --- # sattu-finetuned-kde4-en-to-jap This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-jap](https://huggingface.co/Helsinki-NLP/opus-mt-en-jap) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 1.4199 - Model Preparation Time: 0.0018 - Bleu: 20.7275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0