iampanda commited on
Commit
b6a8638
1 Parent(s): 6227768

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -1
README.md CHANGED
@@ -1059,7 +1059,43 @@ license: mit
1059
  library_name: sentence-transformers
1060
  ---
1061
  <h2 align="left">ZPoint Large Embedding for Chinese</h2>
1062
- [2024-06-04] release zpoint_large_embedding_zh.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063
 
1064
  ```python
1065
  from sentence_transformers import SentenceTransformer
 
1059
  library_name: sentence-transformers
1060
  ---
1061
  <h2 align="left">ZPoint Large Embedding for Chinese</h2>
1062
+
1063
+ **[2024-06-04]** Release zpoint_large_embedding_zh, and upload model weight to huggingface
1064
+ **[2024-06-05]** Add training details
1065
+
1066
+ ### Training Details
1067
+
1068
+ **Base Model**
1069
+ 1) We chose [Stella](https://huggingface.co/infgrad/stella-mrl-large-zh-v3.5-1792d) as our base model.
1070
+
1071
+ **Training Data**
1072
+ 1) **Hard negative samping**
1073
+ - For retrieval task, We sampled 10 hard negative passages/answers from top50-top200 related passages/answers for each query.
1074
+ - For classification/clustering tasks, we sampled 5 hard negative samples from other classes/cluster for each sample.
1075
+ - For classification/clustering tasks, we also used the category names of each class and cluster as positive and negative samples.
1076
+
1077
+ 2) **Data synthesis by LLM (Qwen1.5-72B)**
1078
+ - For retrieval tasks, we used LLM to rewrite each query, generating five different rewritten results.
1079
+ - For retrieval tasks, we also generated five new queries for some documents by LLM.
1080
+ - For non-retrieval tasks, we used LLM to rewrite the queries, generating five rewritten results for each query.
1081
+ - Finally, total amount of synthesized data is about 30 million.
1082
+
1083
+ 3) **Collect more data for retrieval-type tasks**
1084
+ - We constructed a dataset of approximately 100 million training samples through collection, machine translation, and LLM synthesis. This dataset includes data from various fields such as healthcare, law, electricity, automotive, and 3C (Consumer Electronics).
1085
+ - [miracl/miracl](https://huggingface.co/datasets/miracl/miracl)
1086
+ - [FreedomIntelligence/Huatuo26M-Lite](https://huggingface.co/datasets/FreedomIntelligence/Huatuo26M-Lite)
1087
+ - [PaddlePaddle/dureader_robust](https://huggingface.co/datasets/PaddlePaddle/dureader_robust) **C-MTEB test filtered**
1088
+ - [THUIR/T2Ranking](https://huggingface.co/datasets/THUIR/T2Ranking) **C-MTEB test filtered**
1089
+ - [Shitao/bge-reranker-data](https://huggingface.co/datasets/Shitao/bge-reranker-data)
1090
+ - [Shitao/bge-reranker-data](https://huggingface.co/datasets/Shitao/MLDR)
1091
+ - ...
1092
+
1093
+ **Training loss**
1094
+ 1) Multi-Task loss like [Piccolo](https://huggingface.co/sensenova/piccolo-large-zh-v2)
1095
+ 2) Matryoshka Representation Learning
1096
+
1097
+
1098
+ ### Example
1099
 
1100
  ```python
1101
  from sentence_transformers import SentenceTransformer