--- license: apache-2.0 library_name: transformers pipeline_tag: text-generation --- # ibleducation/ibl-tutoring-neural-chat-7B ibleducation/ibl-tutoring-neural-chat-7B is a model finetuned on top of Intel/neural-chat-7b-v1-1. This model is finetuned to give responses in a way befitting of a professional teacher. It is finetuned to exhibit characteristics and virtues such as compassion, encouragement, friendliness and more. ## Benchmarks | Task |Version| Metric |Value | |Stderr| |-------------|------:|--------|-----:|---|-----:| |hellaswag | 0|acc |0.5355|± |0.0050| | | |acc_norm|0.6977|± |0.0046| |truthfulqa_mc| 1|mc1 |0.2876|± |0.0158| | | |mc2 |0.4555|± |0.0158| ## Model Details - **Developed by:** [IBL Education](https://ibl.ai) - **Base Model:** [Intel/neural-chat-7b-v1-1](https://huggingface.co/ibleducation/ibl-tutoring-neural-chat-7B - **Language:** English - **Finetuned from weights:** [Intel/neural-chat-7b-v1-1](https://huggingface.co/Intel/neural-chat-7b-v1-1) - **Finetuned on data:** - ibl-best-practices-instructor-dataset (private) - **Model License:** Apache 2.0 ## How to Use ibl-tutoring-chat-7B Model from Python Code (HuggingFace transformers) ## ### Install the necessary packages Requires: [transformers](https://pypi.org/project/transformers/) 4.31.0 , and [accelerate](https://pypi.org/project/accelerate/) 0.23.0 or later. ```shell pip install transformers==4.31.0 pip install accelerate==0.23.0 ``` ### You can then try the following example code ```python from transformers import AutoModelForCausalLM, AutoTokenizer import transformers import torch model_id = "ibleducation/ibl-tutoring-neural-chat-7B" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", trust_remote_code=True, ) pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, ) prompt = "What makes a good teacher?" response = pipeline(prompt) print(response['generated_text']) ``` **Important** - Use the prompt template below for ibl-tutoring-chat-7B: ``` {prompt} ```