File size: 12,381 Bytes
00749d7 1f46341 00749d7 1f46341 f3aadbd d7db5fd f3aadbd 1f46341 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
---
pipeline_tag: text-generation
inference: false
license: apache-2.0
# datasets:
# metrics:
# - code_eval
library_name: transformers
tags:
- language
- granite-3.0
model-index:
- name: granite-3.0-2b-instruct
results:
- task:
type: text-generation
dataset:
type: human-exams
name: MMLU
metrics:
- name: pass@1
type: pass@1
value:
veriefied: false
- task:
type: text-generation
dataset:
type: human-exams
name: MMLU-Pro
metrics:
- name: pass@1
type: pass@1
value:
veriefied: false
- task:
type: text-generation
dataset:
type: human-exams
name: AGI-Eval
metrics:
- name: pass@1
type: pass@1
value:
veriefied: false
- task:
type: text-generation
dataset:
type: commonsense
name: WinoGrande
metrics:
- name: pass@1
type: pass@1
value:
veriefied: false
- task:
type: text-generation
dataset:
type: commonsense
name: OBQA
metrics:
- name: pass@1
type: pass@1
value:
veriefied: false
- task:
type: text-generation
dataset:
type: commonsense
name: SIQA
metrics:
- name: pass@1
type: pass@1
value:
veriefied: false
- task:
type: text-generation
dataset:
type: commonsense
name: PIQA
metrics:
- name: pass@1
type: pass@1
value:
veriefied: false
- task:
type: text-generation
dataset:
type: commonsense
name: Hellaswag
metrics:
- name: pass@1
type: pass@1
value:
veriefied: false
- task:
type: text-generation
dataset:
type: commonsense
name: TruthfulQA
metrics:
- name: pass@1
type: pass@1
value:
veriefied: false
- task:
type: text-generation
dataset:
type: reading-comprehension
name: BoolQ
metrics:
- name: pass@1
type: pass@1
value:
veriefied: false
- task:
type: text-generation
dataset:
type: reading-comprehension
name: SQuAD v2
metrics:
- name: pass@1
type: pass@1
value:
veriefied: false
- task:
type: text-generation
dataset:
type: reasoning
name: ARC-C
metrics:
- name: pass@1
type: pass@1
value:
veriefied: false
- task:
type: text-generation
dataset:
type: reasoning
name: GPQA
metrics:
- name: pass@1
type: pass@1
value:
veriefied: false
- task:
type: text-generation
dataset:
type: reasoning
name: BBH
metrics:
- name: pass@1
type: pass@1
value:
veriefied: false
- task:
type: text-generation
dataset:
type: code
name: HumanEval
metrics:
- name: pass@1
type: pass@1
value:
veriefied: false
- task:
type: text-generation
dataset:
type: code
name: MBPP
metrics:
- name: pass@1
type: pass@1
value:
veriefied: false
- task:
type: text-generation
dataset:
type: math
name: GSM8K
metrics:
- name: pass@1
type: pass@1
value:
veriefied: false
- task:
type: text-generation
dataset:
type: math
name: MATH
metrics:
- name: pass@1
type: pass@1
value:
veriefied: false
- task:
type: text-generation
dataset:
type: multilingual
name: MGSM
metrics:
- name: pass@1
type: pass@1
value:
veriefied: false
---
<!-- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62cd5057674cdb524450093d/1hzxoPwqkBJXshKVVe6_9.png) -->
# Granite-3.0-2B-Instruct
## Model Summary
**Granite-3.0-2B-Instruct** is a lightweight and open-source 2B parameter model fine tuned from *Granite-3.0-2B-Base* on a combination of open-source and proprietary instruction data with a **permissively licensed**. This language model is designed to excel in instruction following tasks such as summarization, problem-solving, text translation, reasoning, code tasks, funcion-calling, and more.
<!-- The lightweight and open-source nature of this model makes it an excellent choice to serve as backbone of real-time applications such as chatbots and conversational agents. -->
- **Developers:** IBM Research
- **GitHub Repository:** [ibm-granite/granite-language-models](https://github.com/ibm-granite/granite-language-models)
- **Website**: [Granite Docs](https://www.ibm.com/granite/docs/)
- **Paper:** [Granite Language Models](https://) <!-- TO DO: Update github repo link when it is ready -->
- **Release Date**: October 21st, 2024
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0).
## Supported Languages
English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, Chinese (Simplified)
## Usage
### Intended use
The model is designed to respond to general instructions and can be used to build AI assistants for multiple domains, including bussiness applications.
### Capabilities
* Summarization
* Text classification
* Text extraction
* Question-answering
* Retrieval Augmented Generation (RAG)
* Code related
* Function-calling
* Multilingual dialog use cases
### Generation
This is a simple example of how to use **Granite-3.0-2B-Instruct** model.
Install the following libraries:
```shell
pip install torch torchvision torchaudio
pip install accelerate
pip install transformers
```
Then, copy the snippet from the section that is relevant for your usecase.
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "auto"
model_path = "ibm-granite/granite-3.0-2b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_path)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()
# change input text as desired
chat = [
{ "role": "user", "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
# tokenize the text
input_tokens = tokenizer(chat, return_tensors="pt").to(device)
# generate output tokens
output = model.generate(**input_tokens,
max_new_tokens=100)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# print output
print(output)
```
<!-- TO DO: function-calling-example
-->
## Model Architeture
**Granite-3.0-2B-Instruct** is based on a decoder-only dense transformer architecture. Core components of this architecture are: GQA and RoPE, MLP with SwiGLU, RMSNorm, and shared input/output embbeddings.
| Model | 2B Dense | 8B Dense | 1B MoE | 3B MoE |
| :-------- | :-------- | :--------| :--------| :--------|
| Embedding size | **2048** | 4096 | 1024 | 1536 |
| Number of layers | **40** | 40 | 24 | 32 |
| Attention head size | **64** | 128 | 64 | 64 |
| Number of attention heads | **32** | 32 | 16 | 24 |
| Number of KV heads | **8** | 8 | 8 | 8 |
| MLP hidden size | **8192** | 12800 | 512 | 512 |
| MLP activation | **SwiGLU** | SwiGLU | SwiGLU | SwiGLU |
| Number of Experts | **—** | — | 32 | 40 |
| MoE TopK | **—** | — | 8 | 8 |
| Initialization std | **0.1** | 0.1 | 0.1 | 0.1 |
| Sequence Length | **4096** | 4096 | 4096 | 4096 |
| Position Embedding | **RoPE** | RoPE | RoPE | RoPE |
| # Paremeters | **2.5B** | 8.1B | 1.3B | 3.3B |
| # Active Parameters | **2.5B** | 8.1B | 400M | 800M |
| # Training tokens | **12T** | 12T | 10T | 10T |
<!-- TO DO: To be completed once the paper is ready, we may changed title to Supervised Finetuning -->
## Training Data
Granite Language Instruct models are trained on a collection of publicly available datasets with non-restrictive license, as well as an IBM collection of synthetic datasets. We annotated and filtered these datasets to only include high-quality instances from each of them in our final mixture. This dataset selection is representative of the following domains:
* English datasets: [Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus), [WebInstructSub](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub), [OASST-OctoPack](https://huggingface.co/datasets/bigcode/oasst-octopack), [Daring-Anteater](https://huggingface.co/datasets/nvidia/Daring-Anteater), [SoftAge-Multiturn](https://huggingface.co/datasets/SoftAge-AI/multi-turn_dataset), [Glaive-RAG-v1 ](https://huggingface.co/datasets/glaiveai/RAG-v1 ), [EvolKit-20k](https://huggingface.co/datasets/arcee-ai/EvolKit-20k ), [Magpie-Phi3-Pro-300K-Filtered](https://huggingface.co/datasets/Magpie-Align/Magpie-Phi3-Pro-300K-Filtered).
* Multilingual datasets: [Aya Dataset](https://huggingface.co/datasets/CohereForAI/aya_dataset) and IBM Synthetic datasets (e.g., Blue Multilingual, Daring Anteater Translated).
* Code datasets: [Glaive Code Assistant V3](https://huggingface.co/datasets/glaiveai/glaive-code-assistant-v3), [SQL Create Context Instruction](https://huggingface.co/datasets/bugdaryan/sql-create-context-instruction), and [Self-OSS-Instruct-SC2](https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k). Single and multi-turn IBM synthetic datasets, including a set of datasets generated via the evol-instruct method.
* Math: [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA), [StackMathQA](https://huggingface.co/datasets/math-ai/StackMathQA ), and [MathInstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
* Tools: [xlam-function-calling](https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k), [Glaive Function Calling V2](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2), [Hermes Function Calling V1](https://huggingface.co/datasets/NousResearch/hermes-function-calling-v1), and IBM Synthetic API data.
* Safety: [SimpleSafetyTests](https://huggingface.co/datasets/Bertievidgen/SimpleSafetyTests), [HarmBench Behaviors](https://github.com/centerforaisafety/HarmBench/blob/main/data/behavior_datasets/harmbench_behaviors_text_all.csv), [Strong Reject](https://github.com/alexandrasouly/strongreject/blob/main/strongreject_dataset/strongreject_dataset.csv), [AdvBench](https://huggingface.co/datasets/walledai/AdvBench), [MistralGuard](https://huggingface.co/datasets/natolambert/xstest-v2-copy), [Do-Not-Answer](https://huggingface.co/datasets/LibrAI/do-not-answer), and IBM Synthetic data for safety.
<!-- CHECK: removed Vela, only talk about blue-vela-->
## Infrastructure
We train the Granite Language models using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs.
<!-- TO DO: Check multilingual statement once the paper is ready -->
## Ethical Considerations and Limitations
Granite instruct models are primarily finetuned using instruction-response pairs mostly in English, but also in German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese (Simplified). As this model has been exposed to multilingual data, it can handle multilingual dialog use cases with a limited performance in non-English tasks. In such case, introducing a small number of examples (few-shot) can help the model in generating more accurate outputs. The model also inherits ethical considerations and limitations from its base model. For more information, please refer to *[Granite-3.0-2B-Base](https://huggingface.co/ibm-granite/granite-3.0-2b-base)* model card.
|