amezasor commited on
Commit
030db14
•
1 Parent(s): 89317d0

base model card - initial commit

Browse files
Files changed (1) hide show
  1. README.md +303 -3
README.md CHANGED
@@ -1,3 +1,303 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-generation
3
+ inference: false
4
+ license: apache-2.0
5
+ # datasets:
6
+ # metrics:
7
+ # - code_eval
8
+ library_name: transformers
9
+ tags:
10
+ - language
11
+ - granite-3.0
12
+ model-index:
13
+ - name: granite-3.0-3b-a800m-base
14
+ results:
15
+ - task:
16
+ type: text-generation
17
+ dataset:
18
+ type: human-exams
19
+ name: MMLU
20
+ metrics:
21
+ - name: pass@1
22
+ type: pass@1
23
+ value: 48.64
24
+ veriefied: false
25
+ - task:
26
+ type: text-generation
27
+ dataset:
28
+ type: human-exams
29
+ name: MMLU-Pro
30
+ metrics:
31
+ - name: pass@1
32
+ type: pass@1
33
+ value: 18.84
34
+ veriefied: false
35
+ - task:
36
+ type: text-generation
37
+ dataset:
38
+ type: human-exams
39
+ name: AGI-Eval
40
+ metrics:
41
+ - name: pass@1
42
+ type: pass@1
43
+ value: 23.81
44
+ veriefied: false
45
+ - task:
46
+ type: text-generation
47
+ dataset:
48
+ type: commonsense
49
+ name: WinoGrande
50
+ metrics:
51
+ - name: pass@1
52
+ type: pass@1
53
+ value: 65.67
54
+ veriefied: false
55
+ - task:
56
+ type: text-generation
57
+ dataset:
58
+ type: commonsense
59
+ name: OBQA
60
+ metrics:
61
+ - name: pass@1
62
+ type: pass@1
63
+ value: 42.20
64
+ veriefied: false
65
+ - task:
66
+ type: text-generation
67
+ dataset:
68
+ type: commonsense
69
+ name: SIQA
70
+ metrics:
71
+ - name: pass@1
72
+ type: pass@1
73
+ value: 47.39
74
+ veriefied: false
75
+ - task:
76
+ type: text-generation
77
+ dataset:
78
+ type: commonsense
79
+ name: PIQA
80
+ metrics:
81
+ - name: pass@1
82
+ type: pass@1
83
+ value: 78.29
84
+ veriefied: false
85
+ - task:
86
+ type: text-generation
87
+ dataset:
88
+ type: commonsense
89
+ name: Hellaswag
90
+ metrics:
91
+ - name: pass@1
92
+ type: pass@1
93
+ value: 72.79
94
+ veriefied: false
95
+ - task:
96
+ type: text-generation
97
+ dataset:
98
+ type: commonsense
99
+ name: TruthfulQA
100
+ metrics:
101
+ - name: pass@1
102
+ type: pass@1
103
+ value: 41.34
104
+ veriefied: false
105
+ - task:
106
+ type: text-generation
107
+ dataset:
108
+ type: reading-comprehension
109
+ name: BoolQ
110
+ metrics:
111
+ - name: pass@1
112
+ type: pass@1
113
+ value: 75.75
114
+ veriefied: false
115
+ - task:
116
+ type: text-generation
117
+ dataset:
118
+ type: reading-comprehension
119
+ name: SQuAD v2
120
+ metrics:
121
+ - name: pass@1
122
+ type: pass@1
123
+ value: 29.96
124
+ veriefied: false
125
+ - task:
126
+ type: text-generation
127
+ dataset:
128
+ type: reasoning
129
+ name: ARC-C
130
+ metrics:
131
+ - name: pass@1
132
+ type: pass@1
133
+ value: 46.84
134
+ veriefied: false
135
+ - task:
136
+ type: text-generation
137
+ dataset:
138
+ type: reasoning
139
+ name: GPQA
140
+ metrics:
141
+ - name: pass@1
142
+ type: pass@1
143
+ value: 24.83
144
+ veriefied: false
145
+ - task:
146
+ type: text-generation
147
+ dataset:
148
+ type: reasoning
149
+ name: BBH
150
+ metrics:
151
+ - name: pass@1
152
+ type: pass@1
153
+ value: 38.93
154
+ veriefied: false
155
+ - task:
156
+ type: text-generation
157
+ dataset:
158
+ type: code
159
+ name: HumanEval
160
+ metrics:
161
+ - name: pass@1
162
+ type: pass@1
163
+ value: 26.83
164
+ veriefied: false
165
+ - task:
166
+ type: text-generation
167
+ dataset:
168
+ type: code
169
+ name: MBPP
170
+ metrics:
171
+ - name: pass@1
172
+ type: pass@1
173
+ value: 34.60
174
+ veriefied: false
175
+ - task:
176
+ type: text-generation
177
+ dataset:
178
+ type: math
179
+ name: GSM8K
180
+ metrics:
181
+ - name: pass@1
182
+ type: pass@1
183
+ value: 46.02
184
+ veriefied: false
185
+ - task:
186
+ type: text-generation
187
+ dataset:
188
+ type: math
189
+ name: MATH
190
+ metrics:
191
+ - name: pass@1
192
+ type: pass@1
193
+ value: 17.40
194
+ veriefied: false
195
+ - task:
196
+ type: text-generation
197
+ dataset:
198
+ type: multilingual
199
+ name: MGSM
200
+ metrics:
201
+ - name: pass@1
202
+ type: pass@1
203
+ value: 25.13
204
+ veriefied: false
205
+ ---
206
+
207
+ <!-- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62cd5057674cdb524450093d/1hzxoPwqkBJXshKVVe6_9.png) -->
208
+
209
+ # Granite-3.0-3B-A800M-Base
210
+
211
+ ## Model Summary
212
+ **Granite-3.0-3B-A800M-Base** is an open-source decoder-only language model from IBM Research that supports a variety of text-to-text generation tasks (e.g., question-answering, text-completion). **Granite-3.0-3B-A800M-Base** is trained from scratch and follows a two-phase training strategy. In the first phase, it is trained on 8 trillion tokens sourced from diverse domains, including natural language, math, code, and safety. During the second phase, it is further trained on 2 trillion tokens using a carefully curated mix of high-quality data, aiming to enhance its performance on specific tasks.
213
+
214
+
215
+ - **Developers:** IBM Research
216
+ - **GitHub Repository:** [ibm-granite/granite-language-models](https://github.com/ibm-granite/granite-language-models)
217
+ - **Paper:** [Granite Language Models](https://) <!-- TO DO: Update github repo ling whe it is ready -->
218
+ - **Release Date**: October 21st, 2024
219
+ - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0).
220
+
221
+ ## Supported Languages
222
+ English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, Chinese (Simplified)
223
+
224
+ ## Usage
225
+ ### Intended use
226
+ Prominent use cases of LLMs in text-to-text generation include summarization, text classification, extraction, question-answering, and more. All Granite Base models are able to handle these tasks as they were trained on a large amount of data from various domains. Moreover, all Granite language model can serve as baseline to create specialized models for specific application scenarios.
227
+
228
+ ### Generation
229
+ This is a simple example of how to use **Granite-3.0-3B-A800M-Base** model.
230
+
231
+ Install the following libraries:
232
+
233
+ ```shell
234
+ pip install torch torchvision torchaudio
235
+ pip install accelerate
236
+ pip install transformers
237
+ ```
238
+ Then, copy the code snippet below to run the example.
239
+
240
+ ```python
241
+ from transformers import AutoModelForCausalLM, AutoTokenizer
242
+ device = "auto"
243
+ model_path = "ibm-granite/granite-3.0-3b-a800m-base"
244
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
245
+ # drop device_map if running on CPU
246
+ model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
247
+ model.eval()
248
+ # change input text as desired
249
+ input_text = "Where is the MIT-IBM Watson AI Lab located?"
250
+ # tokenize the text
251
+ input_tokens = tokenizer(input_text, return_tensors="pt").to(device)
252
+ # generate output tokens
253
+ output = model.generate(**input_tokens,
254
+ max_length=4000)
255
+ # decode output tokens into text
256
+ output = tokenizer.batch_decode(output)
257
+ # print output
258
+ print(output)
259
+ ```
260
+
261
+ ## Model Architeture
262
+ **Granite-3.0-3B-A800M-Base** is based on a decoder-only sparse Mixture of Experts(MoE) transformer architecture. Core components of this architecture are: Fine-grained Experts, Dropless Token Routing, and Load Balancing Loss.
263
+
264
+ | Model | 2B Dense | 8B Dense | 1B MoE | 3B MoE |
265
+ | :-------- | :--------| :--------| :--------| :-------- |
266
+ | Embedding size | 2048 | 4096 | 1024 | **1536** |
267
+ | Number of layers | 40 | 40 | 24 | **32** |
268
+ | Attention head size | 64 | 128 | 64 | **64** |
269
+ | Number of attention heads | 32 | 32 | 16 | **24** |
270
+ | Number of KV heads | 8 | 8 | 8 | **8** |
271
+ | MLP hidden size | 8192 | 12800 | 512 | **512** |
272
+ | MLP activation | SwiGLU | SwiGLU | SwiGLU | **SwiGLU** |
273
+ | Number of Experts | — | — | 32 | **40** |
274
+ | MoE TopK | — | — | 8 | **8** |
275
+ | Initialization std | 0.1 | 0.1 | 0.1 | **0.1** |
276
+ | Sequence Length | 4096 | 4096 | 4096 | **4096** |
277
+ | Position Embedding | RoPE | RoPE | RoPE | **RoPE** |
278
+ | # Paremeters | 2.5B | 8.1B | 1.3B | **3.3B** |
279
+ | # Active Parameters | 2.5B | 8.1B | 400M | **800M** |
280
+ | # Training tokens | 12T | 12T | 10T | **10T** |
281
+
282
+ <!-- TO DO: To be completed once the paper is ready -->
283
+ ## Training Data
284
+ This model is trained on a mix of open-source and proprietary datasets.
285
+
286
+ <!-- CHECK: removed Vela, only talk about blue-vela-->
287
+ ## Infrastructure
288
+ We train the Granite Language models using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs.
289
+
290
+ ## Ethical Considerations and Limitations
291
+ The use of Large Language Models involves risks and ethical considerations people must be aware of, including but not limited to: bias and fairness, misinformation, and autonomous decision-making. **Granite-3.0-3B-A800M-Base** model is not the exception in this regard. Even though this model is suited for multiple generative AI tasks, it has not undergone any safety alignment, there it may produce problematic outputs. Additionally, it remains uncertain whether smaller models might exhibit increased susceptibility to hallucination in generation scenarios by copying text verbatim from the training dataset due to their reduced sizes and memorization capacities. This aspect is currently an active area of research, and we anticipate more rigorous exploration, comprehension, and mitigations in this domain. Regarding ethics, a latent risk associated with all Large Language Models is their malicious utilization. We urge the community to use **Granite-3.0-3B-A800M-Base** model with ethical intentions and in a responsible way.
292
+
293
+ ## Citation
294
+ ```
295
+ @misc{granite-models,
296
+ author = {author 1, author2, ...},
297
+ title = {},
298
+ journal = {},
299
+ volume = {},
300
+ year = {2024},
301
+ url = {https://arxiv.org/abs/0000.00000},
302
+ }
303
+ ```