Update README.md
Browse files
README.md
CHANGED
@@ -7,13 +7,13 @@ tags:
|
|
7 |
- language
|
8 |
- granite-3.1
|
9 |
base_model:
|
10 |
-
- ibm-granite/
|
11 |
---
|
12 |
|
13 |
# Granite-3.1-1B-A400M-Instruct
|
14 |
|
15 |
**Model Summary:**
|
16 |
-
Granite-3.1-1B-A400M-Instruct is a 8B parameter long-context instruct model finetuned from Granite-3.1-
|
17 |
|
18 |
- **Developers:** Granite Team, IBM
|
19 |
- **GitHub Repository:** [ibm-granite/granite-3.1-language-models](https://github.com/ibm-granite/granite-3.1-language-models)
|
@@ -82,21 +82,21 @@ Granite-3.1-1B-A400M-Instruct is based on a decoder-only dense transformer archi
|
|
82 |
|
83 |
| Model | 2B Dense | 8B Dense | 1B MoE | 3B MoE |
|
84 |
| :-------- | :--------| :-------- | :------| :------|
|
85 |
-
| Embedding size | 2048 |
|
86 |
-
| Number of layers | 40 | **40
|
87 |
-
| Attention head size | 64 |
|
88 |
-
| Number of attention heads | 32 |
|
89 |
-
| Number of KV heads | 8 |
|
90 |
-
| MLP hidden size | 8192 |
|
91 |
-
| MLP activation | SwiGLU |
|
92 |
-
| Number of experts | β |
|
93 |
-
| MoE TopK | β |
|
94 |
-
| Initialization std | 0.1 |
|
95 |
-
| Sequence length | 128K |
|
96 |
-
| Position embedding | RoPE |
|
97 |
-
| # Parameters | 2.5B |
|
98 |
-
| # Active parameters | 2.5B |
|
99 |
-
| # Training tokens | 12T |
|
100 |
|
101 |
**Training Data:**
|
102 |
Overall, our SFT data is largely comprised of three key sources: (1) publicly available datasets with permissive license, (2) internal synthetic data targeting specific capabilities including long-context tasks, and (3) very small amounts of human-curated data. A detailed attribution of datasets can be found in the [Granite 3.0 Technical Report](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/paper.pdf), [Granite 3.1 Technical Report (coming soon)](https://huggingface.co/collections/ibm-granite/granite-31-language-models-6751dbbf2f3389bec5c6f02d), and [Accompanying Author List](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/author-ack.pdf).
|
|
|
7 |
- language
|
8 |
- granite-3.1
|
9 |
base_model:
|
10 |
+
- ibm-granite/granite-3.1-1b-a400m-base
|
11 |
---
|
12 |
|
13 |
# Granite-3.1-1B-A400M-Instruct
|
14 |
|
15 |
**Model Summary:**
|
16 |
+
Granite-3.1-1B-A400M-Instruct is a 8B parameter long-context instruct model finetuned from Granite-3.1-1B-A400M-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems. This model is developed using a diverse set of techniques with a structured chat format, including supervised finetuning, model alignment using reinforcement learning, and model merging.
|
17 |
|
18 |
- **Developers:** Granite Team, IBM
|
19 |
- **GitHub Repository:** [ibm-granite/granite-3.1-language-models](https://github.com/ibm-granite/granite-3.1-language-models)
|
|
|
82 |
|
83 |
| Model | 2B Dense | 8B Dense | 1B MoE | 3B MoE |
|
84 |
| :-------- | :--------| :-------- | :------| :------|
|
85 |
+
| Embedding size | 2048 | 4096 | **1024** | 1536 |
|
86 |
+
| Number of layers | 40 | **40 | **24** | 32 |
|
87 |
+
| Attention head size | 64 | 128 | **64** | 64 |
|
88 |
+
| Number of attention heads | 32 | 32 | **16** | 24 |
|
89 |
+
| Number of KV heads | 8 | 8 | **8** | 8 |
|
90 |
+
| MLP hidden size | 8192 | 12800 | **512** | 512 |
|
91 |
+
| MLP activation | SwiGLU | SwiGLU | **SwiGLU** | SwiGLU |
|
92 |
+
| Number of experts | β | β | **32** | 40 |
|
93 |
+
| MoE TopK | β | β | **8** | 8 |
|
94 |
+
| Initialization std | 0.1 | 0.1 | **0.1** | 0.1 |
|
95 |
+
| Sequence length | 128K | 128K | **128K** | 128K |
|
96 |
+
| Position embedding | RoPE | RoPE | **RoPE** | RoPE |
|
97 |
+
| # Parameters | 2.5B | 8.1B | **1.3B** | 3.3B |
|
98 |
+
| # Active parameters | 2.5B | 8.1B | **400M** | 800M |
|
99 |
+
| # Training tokens | 12T | 12T | **10T** | 10T |
|
100 |
|
101 |
**Training Data:**
|
102 |
Overall, our SFT data is largely comprised of three key sources: (1) publicly available datasets with permissive license, (2) internal synthetic data targeting specific capabilities including long-context tasks, and (3) very small amounts of human-curated data. A detailed attribution of datasets can be found in the [Granite 3.0 Technical Report](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/paper.pdf), [Granite 3.1 Technical Report (coming soon)](https://huggingface.co/collections/ibm-granite/granite-31-language-models-6751dbbf2f3389bec5c6f02d), and [Accompanying Author List](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/author-ack.pdf).
|