blumenstiel's picture
Update inference code
88c4554
import argparse
import os
from typing import List, Union
import re
import datetime
import numpy as np
import rasterio
import torch
import yaml
from einops import rearrange
from terratorch.cli_tools import LightningInferenceModel
NO_DATA = -9999
NO_DATA_FLOAT = 0.0001
OFFSET = 0
PERCENTILE = 99
def process_channel_group(orig_img, channels):
"""
Args:
orig_img: torch.Tensor representing original image (reference) with shape = (bands, H, W).
channels: list of indices representing RGB channels.
Returns:
torch.Tensor with shape (num_channels, height, width) for original image
"""
orig_img = orig_img[channels, ...]
valid_mask = torch.ones_like(orig_img, dtype=torch.bool)
valid_mask[orig_img == NO_DATA_FLOAT] = False
# Rescale (enhancing contrast)
max_value = max(3000, np.percentile(orig_img[valid_mask], PERCENTILE))
min_value = OFFSET
orig_img = torch.clamp((orig_img - min_value) / (max_value - min_value), 0, 1)
# No data as zeros
orig_img[~valid_mask] = 0
return orig_img
def read_geotiff(file_path: str):
"""Read all bands from *file_path* and return image + meta info.
Args:
file_path: path to image file.
Returns:
np.ndarray with shape (bands, height, width)
meta info dict
"""
with rasterio.open(file_path) as src:
img = src.read()
meta = src.meta
try:
coords = src.lnglat()
except:
# Cannot read coords
coords = None
return img, meta, coords
def save_geotiff(image, output_path: str, meta: dict):
"""Save multi-band image in Geotiff file.
Args:
image: np.ndarray with shape (bands, height, width)
output_path: path where to save the image
meta: dict with meta info.
"""
with rasterio.open(output_path, "w", **meta) as dest:
for i in range(image.shape[0]):
dest.write(image[i, :, :], i + 1)
return
def _convert_np_uint8(float_image: torch.Tensor):
image = float_image.numpy() * 255.0
image = image.astype(dtype=np.uint8)
return image
def load_example(
file_paths: List[str],
mean: List[float] = None,
std: List[float] = None,
indices: Union[list[int], None] = None,
):
"""Build an input example by loading images in *file_paths*.
Args:
file_paths: list of file paths .
mean: list containing mean values for each band in the images in *file_paths*.
std: list containing std values for each band in the images in *file_paths*.
Returns:
np.array containing created example
list of meta info for each image in *file_paths*
"""
imgs = []
metas = []
temporal_coords = []
location_coords = []
for file in file_paths:
img, meta, coords = read_geotiff(file)
# Rescaling (don't normalize on nodata)
img = np.moveaxis(img, 0, -1) # channels last for rescaling
if indices is not None:
img = img[..., indices]
if mean is not None and std is not None:
img = np.where(img == NO_DATA, NO_DATA_FLOAT, (img - mean) / std)
imgs.append(img)
metas.append(meta)
if coords is not None:
location_coords.append(coords)
try:
match = re.search(r'(\d{7,8}T\d{6})', file)
if match:
year = int(match.group(1)[:4])
julian_day = match.group(1).split('T')[0][4:]
if len(julian_day) == 3:
julian_day = int(julian_day)
else:
julian_day = datetime.datetime.strptime(julian_day, '%m%d').timetuple().tm_yday
temporal_coords.append([year, julian_day])
except Exception as e:
print(f'Could not extract timestamp for {file} ({e})')
imgs = np.stack(imgs, axis=0) # num_frames, H, W, C
imgs = np.moveaxis(imgs, -1, 0).astype("float32") # C, num_frames, H, W
imgs = np.expand_dims(imgs, axis=0) # add batch di
return imgs, temporal_coords, location_coords, metas
def run_model(input_data, temporal_coords, location_coords, model, datamodule, img_size):
# Reflect pad if not divisible by img_size
original_h, original_w = input_data.shape[-2:]
pad_h = (img_size - (original_h % img_size)) % img_size
pad_w = (img_size - (original_w % img_size)) % img_size
input_data = np.pad(
input_data, ((0, 0), (0, 0), (0, 0), (0, pad_h), (0, pad_w)), mode="reflect"
)
# Build sliding window
batch_size = 1
batch = torch.tensor(input_data, device="cpu")
windows = batch.unfold(3, img_size, img_size).unfold(4, img_size, img_size)
h1, w1 = windows.shape[3:5]
windows = rearrange(
windows, "b c t h1 w1 h w -> (b h1 w1) c t h w", h=img_size, w=img_size
)
# Split into batches if number of windows > batch_size
num_batches = windows.shape[0] // batch_size if windows.shape[0] > batch_size else 1
windows = torch.tensor_split(windows, num_batches, dim=0)
if temporal_coords:
temporal_coords = torch.Tensor(temporal_coords, device=model.device).unsqueeze(0)
else:
temporal_coords = None
if location_coords:
location_coords = torch.Tensor(location_coords[0], device=model.device).unsqueeze(0)
else:
location_coords = None
# Run model
pred_imgs = []
for x in windows:
# Apply standardization
x = datamodule.test_transform(image=x.squeeze().numpy().transpose(1,2,0))
x = datamodule.aug(x)['image']
with torch.no_grad():
x = x.to(model.device)
pred = model(x, temporal_coords=temporal_coords, location_coords=location_coords)
pred = pred.output.detach().cpu()
y_hat = pred.argmax(dim=1)
y_hat = torch.nn.functional.interpolate(y_hat.unsqueeze(1).float(), size=img_size, mode="nearest")
pred_imgs.append(y_hat)
pred_imgs = torch.concat(pred_imgs, dim=0)
# Build images from patches
pred_imgs = rearrange(
pred_imgs,
"(b h1 w1) c h w -> b c (h1 h) (w1 w)",
h=img_size,
w=img_size,
b=1,
c=1,
h1=h1,
w1=w1,
)
# Cut padded area back to original size
pred_imgs = pred_imgs[..., :original_h, :original_w]
# Squeeze (batch size 1)
pred_imgs = pred_imgs[0]
return pred_imgs
def main(
data_file: str,
config: str,
checkpoint: str,
output_dir: str,
rgb_outputs: bool,
input_indices: list[int] = None,
):
os.makedirs(output_dir, exist_ok=True)
with open(config, "r") as f:
config_dict = yaml.safe_load(f)
# Load model ---------------------------------------------------------------------------------
lightning_model = LightningInferenceModel.from_config(config, checkpoint)
img_size = 512 # Size of Sen1Floods11
# Loading data ---------------------------------------------------------------------------------
input_data, temporal_coords, location_coords, meta_data = load_example(
file_paths=[data_file], indices=input_indices,
)
meta_data = meta_data[0] # only one image
if input_data.mean() > 1:
input_data = input_data / 10000 # Convert to range 0-1
# Running model --------------------------------------------------------------------------------
lightning_model.model.eval()
channels = [config_dict['data']['init_args']['bands'].index(b) for b in ["RED", "GREEN", "BLUE"]] # BGR -> RGB
pred = run_model(input_data, temporal_coords, location_coords,
lightning_model.model, lightning_model.datamodule, img_size)
# Save pred
meta_data.update(count=1, dtype="uint8", compress="lzw", nodata=0)
pred_file = os.path.join(output_dir, f"pred_{os.path.splitext(os.path.basename(data_file))[0]}.tiff")
save_geotiff(_convert_np_uint8(pred), pred_file, meta_data)
# Save image + pred
meta_data.update(count=3, dtype="uint8", compress="lzw", nodata=0)
if input_data.mean() < 1:
input_data = input_data * 10000 # Scale to 0-10000
rgb_orig = process_channel_group(
orig_img=torch.Tensor(input_data[0, :, 0, ...]),
channels=channels,
)
pred[pred == 0.] = np.nan
img_pred = rgb_orig * 0.7 + pred * 0.3
img_pred[img_pred.isnan()] = rgb_orig[img_pred.isnan()]
img_pred_file = os.path.join(output_dir, f"rgb_pred_{os.path.splitext(os.path.basename(data_file))[0]}.tiff")
save_geotiff(
image=_convert_np_uint8(img_pred),
output_path=img_pred_file,
meta=meta_data,
)
# Save image rgb
if rgb_outputs:
rgb_file = os.path.join(output_dir, f"original_rgb_{os.path.splitext(os.path.basename(data_file))[0]}.tiff")
save_geotiff(
image=_convert_np_uint8(rgb_orig),
output_path=rgb_file,
meta=meta_data,
)
print("Done!")
if __name__ == "__main__":
parser = argparse.ArgumentParser("MAE run inference", add_help=False)
parser.add_argument(
"--data_file",
type=str,
default="examples/India_900498_S2Hand.tif",
help="Path to the file.",
)
parser.add_argument(
"--config",
"-c",
type=str,
default="config.yaml",
help="Path to yaml file containing model parameters.",
)
parser.add_argument(
"--checkpoint",
type=str,
default="Prithvi-EO-V2-300M-TL-Sen1Floods11.ckpt",
help="Path to a checkpoint file to load from.",
)
parser.add_argument(
"--output_dir",
type=str,
default="output",
help="Path to the directory where to save outputs.",
)
parser.add_argument(
"--input_indices",
default=[1,2,3,8,11,12],
type=int,
nargs="+",
help="0-based indices of the six Prithvi channels to be selected from the input. By default selects [1,2,3,8,11,12] for S2L1C data.",
)
parser.add_argument(
"--rgb_outputs",
action="store_true",
help="If present, output files will only contain RGB channels. "
"Otherwise, all bands will be saved.",
)
args = parser.parse_args()
main(**vars(args))