blumenstiel
commited on
Commit
·
4ffcc1c
1
Parent(s):
fb4bb36
Added initial files
Browse files- .gitattributes +1 -0
- README.md +61 -3
- assets/geobench_overall_300M.png +0 -0
- assets/logos.png +0 -0
- assets/modal_architecture.jpg +0 -0
- config.json +26 -0
- examples/HLS.L30.T13REN.2018013T172747.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif +3 -0
- examples/HLS.L30.T13REN.2018029T172738.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif +3 -0
- examples/HLS.L30.T13REN.2018061T172724.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif +3 -0
- inference.py +522 -0
- prithvi_mae.py +736 -0
- requirements.txt +5 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.tif filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,61 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
|
5 |
+
# Prithvi-EO-2.0
|
6 |
+
|
7 |
+
Prithvi-EO-2.0 is the second generation EO foundation model jointly developed by IBM, NASA, and Jülich Supercomputing Centre.
|
8 |
+
|
9 |
+
## Architecture Overview
|
10 |
+
|
11 |
+
Prithvi-EO-2.0 is based on the ViT architecture, pre-trained using a masked autoencoder (MAE) approach, with two major modifications as shown in the figure below. First, we introduce a random dropout mechanism that completely removes different bands before the patch embeddings, with the aim of improving the ability of the model to deal with missingness of data. Second, we make modifications to support inputs with temporal and multi-spectral characteristics.
|
12 |
+
|
13 |
+
![model_architecture](assets/modal_architecture.jpg)
|
14 |
+
|
15 |
+
Our main modifications to the ViT architecture are the 3D positional embedding and the 3D patch embedding, which are required to deal with spatiotemporal data. We have also included metadata and process metadata about the actual geolocation (e.g. latitude and longitude) and date (i.e. year and day-of-year ranging 1-365). This is done by adding biases that are calculated via 2D sine-cosine positional encoding and added to the 3D positional embeddings and 3D patch embeddings via a learned weighted sum (i.e. the weight given is a parameter learned during pretraining). Since this metadata is often not available, we pretrained Prithvi-EO-2.0 allowing for this to be absent via a dropout.
|
16 |
+
|
17 |
+
## Pre-trained Models
|
18 |
+
|
19 |
+
| Model | Details | Weights |
|
20 |
+
| ------------- | ------------- |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
21 |
+
|Prithvi-EO-2.0-300M | Pretrained 300M parameter model | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M) |
|
22 |
+
|Prithvi-EO-2.0-300M-TL | Pretrained 300M parameter model with temporal and location embeddings | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL) |
|
23 |
+
|Prithvi-EO-2.0-600M | Pretrained 600M parameter model | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-600M](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-600M) | |
|
24 |
+
|Prithvi-EO-2.0-600M-TL | Pretrained 600M parameter model with temporal and location embeddings | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-600M-TL](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-600M-TL) |
|
25 |
+
|
26 |
+
The models were pre-trained at the Julich Supercomputing Center with NASA's HLS V2 product (30m granularity) using 4.2M samples with six bands in the following order: Blue, Green, Red, Narrow NIR, SWIR, SWIR 2.
|
27 |
+
|
28 |
+
## Benchmarking
|
29 |
+
The model was benchmarked on GEO-Bench across 12 different earth observation classification and segmentation tasks at different resolutions against some of the most popular geospatial foundation models. Below the average score across all GEO-Bench tasks is shown.
|
30 |
+
|
31 |
+
![geobench_overall_300M.png](assets/geobench_overall_300M.png)
|
32 |
+
|
33 |
+
## Demo and inference
|
34 |
+
We provide a **demo** running Prithvi-EO-2.0-300M-TL [here](https://huggingface.co/spaces/ibm-nasa-geospatial/Prithvi-EO-2.0-Demo).
|
35 |
+
|
36 |
+
There is also an inference script (`inference.py`) that allows to run the image reconstruction on a set of HLS images assumed to be from the same location at different timestamps (see example below). These should be provided in chronological order in geotiff format, including the channels described above (Blue, Green, Red, Narrow NIR, SWIR 1, SWIR 2) in reflectance units.
|
37 |
+
|
38 |
+
```
|
39 |
+
python inference.py --data_files t1.tif t2.tif t3.tif t4.tif --input_indices <optional, space separated 0-based indices of the six Prithvi channels in your input>
|
40 |
+
```
|
41 |
+
|
42 |
+
## Finetuning
|
43 |
+
|
44 |
+
You can finetune the model using [TerraTorch](https://github.com/IBM/terratorch).
|
45 |
+
|
46 |
+
### Feedback
|
47 |
+
|
48 |
+
Your feedback is invaluable to us. If you have any feedback about the model, please feel free to share it with us. You can do this by starting a discussion in this HF repository or submitting an issue to [TerraTorch](https://github.com/IBM/terratorch) on GitHub.
|
49 |
+
|
50 |
+
### Citation
|
51 |
+
|
52 |
+
If this model helped your research, please cite `Prithvi-EO-2.0` in your publications. Here are two BibTeX entries as examples:
|
53 |
+
|
54 |
+
```
|
55 |
+
@article{Prithvi-EO-2-preprint,
|
56 |
+
author = {},
|
57 |
+
title = {{Title}},
|
58 |
+
journal = {arxiv},
|
59 |
+
year = {2024}
|
60 |
+
}
|
61 |
+
```
|
assets/geobench_overall_300M.png
ADDED
assets/logos.png
ADDED
assets/modal_architecture.jpg
ADDED
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architecture": "prithvi_eo_v2_300",
|
3 |
+
"num_features": 1024,
|
4 |
+
"pretrained_cfg": {
|
5 |
+
"img_size": 224,
|
6 |
+
"num_frames": 4,
|
7 |
+
"patch_size": [1, 16, 16],
|
8 |
+
"in_chans": 6,
|
9 |
+
"embed_dim": 1024,
|
10 |
+
"depth": 24,
|
11 |
+
"num_heads": 16,
|
12 |
+
"decoder_embed_dim": 512,
|
13 |
+
"decoder_depth": 8,
|
14 |
+
"decoder_num_heads": 16,
|
15 |
+
"mlp_ratio": 4,
|
16 |
+
"coords_encoding": [],
|
17 |
+
"coords_scale_learn": false,
|
18 |
+
"mask_ratio": 0.75,
|
19 |
+
"norm_pix_loss": false,
|
20 |
+
"bands": ["B02", "B03", "B04", "B05", "B06", "B07"],
|
21 |
+
"mean": [1087.0, 1342.0, 1433.0, 2734.0, 1958.0, 1363.0],
|
22 |
+
"std": [2248.0, 2179.0, 2178.0, 1850.0, 1242.0, 1049.0],
|
23 |
+
"origin_url": "https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M",
|
24 |
+
"paper_ids": "arXiv:X.X"
|
25 |
+
}
|
26 |
+
}
|
examples/HLS.L30.T13REN.2018013T172747.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif
ADDED
Git LFS Details
|
examples/HLS.L30.T13REN.2018029T172738.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif
ADDED
Git LFS Details
|
examples/HLS.L30.T13REN.2018061T172724.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif
ADDED
Git LFS Details
|
inference.py
ADDED
@@ -0,0 +1,522 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import functools
|
3 |
+
import os
|
4 |
+
from typing import List, Union
|
5 |
+
import re
|
6 |
+
import datetime
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
import rasterio
|
10 |
+
import torch
|
11 |
+
import yaml
|
12 |
+
from einops import rearrange
|
13 |
+
|
14 |
+
from functools import partial
|
15 |
+
from prithvi_mae import PrithviMAE
|
16 |
+
|
17 |
+
NO_DATA = -9999
|
18 |
+
NO_DATA_FLOAT = 0.0001
|
19 |
+
OFFSET = 0
|
20 |
+
PERCENTILE = 99.9
|
21 |
+
|
22 |
+
|
23 |
+
def process_channel_group(orig_img, new_img, channels, mean, std):
|
24 |
+
"""Process *orig_img* and *new_img* for RGB visualization. Each band is rescaled back to the
|
25 |
+
original range using *data_mean* and *data_std* and then lowest and highest percentiles are
|
26 |
+
removed to enhance contrast. Data is rescaled to (0, 1) range and stacked channels_first.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
orig_img: torch.Tensor representing original image (reference) with shape = (bands, H, W).
|
30 |
+
new_img: torch.Tensor representing image with shape = (bands, H, W).
|
31 |
+
channels: list of indices representing RGB channels.
|
32 |
+
mean: list of mean values for each band.
|
33 |
+
std: list of std values for each band.
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
torch.Tensor with shape (num_channels, height, width) for original image
|
37 |
+
torch.Tensor with shape (num_channels, height, width) for the other image
|
38 |
+
"""
|
39 |
+
|
40 |
+
mean = torch.tensor(np.asarray(mean)[:, None, None]) # C H W
|
41 |
+
std = torch.tensor(np.asarray(std)[:, None, None])
|
42 |
+
orig_img = orig_img[channels, ...]
|
43 |
+
valid_mask = torch.ones_like(orig_img, dtype=torch.bool)
|
44 |
+
valid_mask[orig_img == NO_DATA_FLOAT] = False
|
45 |
+
|
46 |
+
# Back to original data range
|
47 |
+
orig_img = (orig_img * std[channels]) + mean[channels]
|
48 |
+
new_img = (new_img[channels, ...] * std[channels]) + mean[channels]
|
49 |
+
|
50 |
+
# Rescale (enhancing contrast)
|
51 |
+
max_value = max(3000, np.percentile(orig_img[valid_mask], PERCENTILE))
|
52 |
+
min_value = OFFSET
|
53 |
+
|
54 |
+
orig_img = torch.clamp((orig_img - min_value) / (max_value - min_value), 0, 1)
|
55 |
+
new_img = torch.clamp((new_img - min_value) / (max_value - min_value), 0, 1)
|
56 |
+
|
57 |
+
# No data as zeros
|
58 |
+
orig_img[~valid_mask] = 0
|
59 |
+
new_img[~valid_mask] = 0
|
60 |
+
|
61 |
+
return orig_img, new_img
|
62 |
+
|
63 |
+
|
64 |
+
def read_geotiff(file_path: str):
|
65 |
+
"""Read all bands from *file_path* and return image + meta info.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
file_path: path to image file.
|
69 |
+
|
70 |
+
Returns:
|
71 |
+
np.ndarray with shape (bands, height, width)
|
72 |
+
meta info dict
|
73 |
+
"""
|
74 |
+
|
75 |
+
with rasterio.open(file_path) as src:
|
76 |
+
img = src.read()
|
77 |
+
meta = src.meta
|
78 |
+
try:
|
79 |
+
coords = src.lnglat()
|
80 |
+
except:
|
81 |
+
# Cannot read coords
|
82 |
+
coords = None
|
83 |
+
|
84 |
+
return img, meta, coords
|
85 |
+
|
86 |
+
|
87 |
+
def save_geotiff(image, output_path: str, meta: dict):
|
88 |
+
"""Save multi-band image in Geotiff file.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
image: np.ndarray with shape (bands, height, width)
|
92 |
+
output_path: path where to save the image
|
93 |
+
meta: dict with meta info.
|
94 |
+
"""
|
95 |
+
|
96 |
+
with rasterio.open(output_path, "w", **meta) as dest:
|
97 |
+
for i in range(image.shape[0]):
|
98 |
+
dest.write(image[i, :, :], i + 1)
|
99 |
+
|
100 |
+
return
|
101 |
+
|
102 |
+
|
103 |
+
def _convert_np_uint8(float_image: torch.Tensor):
|
104 |
+
image = float_image.numpy() * 255.0
|
105 |
+
image = image.astype(dtype=np.uint8)
|
106 |
+
|
107 |
+
return image
|
108 |
+
|
109 |
+
|
110 |
+
def load_example(
|
111 |
+
file_paths: List[str],
|
112 |
+
mean: List[float],
|
113 |
+
std: List[float],
|
114 |
+
indices: Union[list[int], None] = None,
|
115 |
+
):
|
116 |
+
"""Build an input example by loading images in *file_paths*.
|
117 |
+
|
118 |
+
Args:
|
119 |
+
file_paths: list of file paths .
|
120 |
+
mean: list containing mean values for each band in the images in *file_paths*.
|
121 |
+
std: list containing std values for each band in the images in *file_paths*.
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
np.array containing created example
|
125 |
+
list of meta info for each image in *file_paths*
|
126 |
+
"""
|
127 |
+
|
128 |
+
imgs = []
|
129 |
+
metas = []
|
130 |
+
temporal_coords = []
|
131 |
+
location_coords = []
|
132 |
+
|
133 |
+
for file in file_paths:
|
134 |
+
img, meta, coords = read_geotiff(file)
|
135 |
+
|
136 |
+
# Rescaling (don't normalize on nodata)
|
137 |
+
img = np.moveaxis(img, 0, -1) # channels last for rescaling
|
138 |
+
if indices is not None:
|
139 |
+
img = img[..., indices]
|
140 |
+
img = np.where(img == NO_DATA, NO_DATA_FLOAT, (img - mean) / std)
|
141 |
+
|
142 |
+
imgs.append(img)
|
143 |
+
metas.append(meta)
|
144 |
+
if coords is not None:
|
145 |
+
location_coords.append(coords)
|
146 |
+
|
147 |
+
try:
|
148 |
+
match = re.search(r'(\d{7,8}T\d{6})', file)
|
149 |
+
if match:
|
150 |
+
year = int(match.group(1)[:4])
|
151 |
+
julian_day = match.group(1).split('T')[0][4:]
|
152 |
+
if len(julian_day) == 3:
|
153 |
+
julian_day = int(julian_day)
|
154 |
+
else:
|
155 |
+
julian_day = datetime.datetime.strptime(julian_day, '%m%d').timetuple().tm_yday
|
156 |
+
temporal_coords.append([year, julian_day])
|
157 |
+
except Exception as e:
|
158 |
+
print(f'Could not extract timestamp for {file} ({e})')
|
159 |
+
|
160 |
+
imgs = np.stack(imgs, axis=0) # num_frames, H, W, C
|
161 |
+
imgs = np.moveaxis(imgs, -1, 0).astype("float32") # C, num_frames, H, W
|
162 |
+
imgs = np.expand_dims(imgs, axis=0) # add batch di
|
163 |
+
|
164 |
+
return imgs, temporal_coords, location_coords, metas
|
165 |
+
|
166 |
+
|
167 |
+
def run_model(
|
168 |
+
model: torch.nn.Module,
|
169 |
+
input_data: torch.Tensor,
|
170 |
+
temporal_coords: None | torch.Tensor,
|
171 |
+
location_coords: None | torch.Tensor,
|
172 |
+
mask_ratio: float,
|
173 |
+
device: torch.device,
|
174 |
+
):
|
175 |
+
"""Run *model* with *input_data* and create images from output tokens (mask, reconstructed + visible).
|
176 |
+
|
177 |
+
Args:
|
178 |
+
model: MAE model to run.
|
179 |
+
input_data: torch.Tensor with shape (B, C, T, H, W).
|
180 |
+
mask_ratio: mask ratio to use.
|
181 |
+
device: device where model should run.
|
182 |
+
|
183 |
+
Returns:
|
184 |
+
3 torch.Tensor with shape (B, C, T, H, W).
|
185 |
+
"""
|
186 |
+
|
187 |
+
with torch.no_grad():
|
188 |
+
x = input_data.to(device)
|
189 |
+
|
190 |
+
_, pred, mask = model(x, temporal_coords, location_coords, mask_ratio)
|
191 |
+
|
192 |
+
# Create mask and prediction images (un-patchify)
|
193 |
+
mask_img = (
|
194 |
+
model.unpatchify(mask.unsqueeze(-1).repeat(1, 1, pred.shape[-1])).detach().cpu()
|
195 |
+
)
|
196 |
+
pred_img = model.unpatchify(pred).detach().cpu()
|
197 |
+
|
198 |
+
# Mix visible and predicted patches
|
199 |
+
rec_img = input_data.clone()
|
200 |
+
rec_img[mask_img == 1] = pred_img[
|
201 |
+
mask_img == 1
|
202 |
+
] # binary mask: 0 is keep, 1 is remove
|
203 |
+
|
204 |
+
# Switch zeros/ones in mask images so masked patches appear darker in plots (better visualization)
|
205 |
+
mask_img = (~(mask_img.to(torch.bool))).to(torch.float)
|
206 |
+
|
207 |
+
return rec_img, mask_img
|
208 |
+
|
209 |
+
|
210 |
+
def save_rgb_imgs(
|
211 |
+
input_img, rec_img, mask_img, channels, mean, std, output_dir, meta_data
|
212 |
+
):
|
213 |
+
"""Wrapper function to save Geotiff images (original, reconstructed, masked) per timestamp.
|
214 |
+
|
215 |
+
Args:
|
216 |
+
input_img: input torch.Tensor with shape (C, T, H, W).
|
217 |
+
rec_img: reconstructed torch.Tensor with shape (C, T, H, W).
|
218 |
+
mask_img: mask torch.Tensor with shape (C, T, H, W).
|
219 |
+
channels: list of indices representing RGB channels.
|
220 |
+
mean: list of mean values for each band.
|
221 |
+
std: list of std values for each band.
|
222 |
+
output_dir: directory where to save outputs.
|
223 |
+
meta_data: list of dicts with geotiff meta info.
|
224 |
+
"""
|
225 |
+
|
226 |
+
for t in range(input_img.shape[1]):
|
227 |
+
rgb_orig, rgb_pred = process_channel_group(
|
228 |
+
orig_img=input_img[:, t, :, :],
|
229 |
+
new_img=rec_img[:, t, :, :],
|
230 |
+
channels=channels,
|
231 |
+
mean=mean,
|
232 |
+
std=std,
|
233 |
+
)
|
234 |
+
|
235 |
+
rgb_mask = mask_img[channels, t, :, :] * rgb_orig
|
236 |
+
|
237 |
+
# Saving images
|
238 |
+
|
239 |
+
save_geotiff(
|
240 |
+
image=_convert_np_uint8(rgb_orig),
|
241 |
+
output_path=os.path.join(output_dir, f"original_rgb_t{t}.tiff"),
|
242 |
+
meta=meta_data[t],
|
243 |
+
)
|
244 |
+
|
245 |
+
save_geotiff(
|
246 |
+
image=_convert_np_uint8(rgb_pred),
|
247 |
+
output_path=os.path.join(output_dir, f"predicted_rgb_t{t}.tiff"),
|
248 |
+
meta=meta_data[t],
|
249 |
+
)
|
250 |
+
|
251 |
+
save_geotiff(
|
252 |
+
image=_convert_np_uint8(rgb_mask),
|
253 |
+
output_path=os.path.join(output_dir, f"masked_rgb_t{t}.tiff"),
|
254 |
+
meta=meta_data[t],
|
255 |
+
)
|
256 |
+
|
257 |
+
|
258 |
+
def save_imgs(rec_img, mask_img, mean, std, output_dir, meta_data):
|
259 |
+
"""Wrapper function to save Geotiff images (reconstructed, mask) per timestamp.
|
260 |
+
|
261 |
+
Args:
|
262 |
+
rec_img: reconstructed torch.Tensor with shape (C, T, H, W).
|
263 |
+
mask_img: mask torch.Tensor with shape (C, T, H, W).
|
264 |
+
mean: list of mean values for each band.
|
265 |
+
std: list of std values for each band.
|
266 |
+
output_dir: directory where to save outputs.
|
267 |
+
meta_data: list of dicts with geotiff meta info.
|
268 |
+
"""
|
269 |
+
|
270 |
+
mean = torch.tensor(np.asarray(mean)[:, None, None]) # C H W
|
271 |
+
std = torch.tensor(np.asarray(std)[:, None, None])
|
272 |
+
|
273 |
+
for t in range(rec_img.shape[1]):
|
274 |
+
# Back to original data range
|
275 |
+
rec_img_t = ((rec_img[:, t, :, :] * std) + mean).to(torch.int16)
|
276 |
+
|
277 |
+
mask_img_t = mask_img[:, t, :, :].to(torch.int16)
|
278 |
+
|
279 |
+
# Saving images
|
280 |
+
|
281 |
+
save_geotiff(
|
282 |
+
image=rec_img_t,
|
283 |
+
output_path=os.path.join(output_dir, f"predicted_t{t}.tiff"),
|
284 |
+
meta=meta_data[t],
|
285 |
+
)
|
286 |
+
|
287 |
+
save_geotiff(
|
288 |
+
image=mask_img_t,
|
289 |
+
output_path=os.path.join(output_dir, f"mask_t{t}.tiff"),
|
290 |
+
meta=meta_data[t],
|
291 |
+
)
|
292 |
+
|
293 |
+
|
294 |
+
def main(
|
295 |
+
data_files: List[str],
|
296 |
+
config_path: str,
|
297 |
+
checkpoint: str,
|
298 |
+
output_dir: str,
|
299 |
+
rgb_outputs: bool,
|
300 |
+
mask_ratio: float = None,
|
301 |
+
input_indices: list[int] = None,
|
302 |
+
):
|
303 |
+
os.makedirs(output_dir, exist_ok=True)
|
304 |
+
|
305 |
+
# Get parameters --------
|
306 |
+
|
307 |
+
import json
|
308 |
+
with open(config_path, "r") as f:
|
309 |
+
config = yaml.safe_load(f)['pretrained_cfg']
|
310 |
+
|
311 |
+
batch_size = 1
|
312 |
+
bands = config['bands']
|
313 |
+
num_frames = len(data_files)
|
314 |
+
mean = config['mean']
|
315 |
+
std = config['std']
|
316 |
+
coords_encoding = config['coords_encoding']
|
317 |
+
img_size = config['img_size']
|
318 |
+
mask_ratio = mask_ratio or config['mask_ratio']
|
319 |
+
|
320 |
+
print(
|
321 |
+
f"\nTreating {len(data_files)} files as {len(data_files)} time steps from the same location\n"
|
322 |
+
)
|
323 |
+
if len(data_files) != 3:
|
324 |
+
print(
|
325 |
+
"The original model was trained for 3 time steps (expecting 3 files). \nResults with different numbers of timesteps may vary"
|
326 |
+
)
|
327 |
+
|
328 |
+
if torch.cuda.is_available():
|
329 |
+
device = torch.device("cuda")
|
330 |
+
else:
|
331 |
+
device = torch.device("cpu")
|
332 |
+
|
333 |
+
print(f"Using {device} device.\n")
|
334 |
+
|
335 |
+
# Loading data ---------------------------------------------------------------------------------
|
336 |
+
|
337 |
+
input_data, temporal_coords, location_coords, meta_data = load_example(
|
338 |
+
file_paths=data_files, indices=input_indices, mean=mean, std=std
|
339 |
+
)
|
340 |
+
|
341 |
+
if len(temporal_coords) != num_frames and 'time' in coords_encoding:
|
342 |
+
coords_encoding.pop('time')
|
343 |
+
if not len(location_coords) and 'location' in coords_encoding:
|
344 |
+
coords_encoding.pop('location')
|
345 |
+
|
346 |
+
# Create model and load checkpoint -------------------------------------------------------------
|
347 |
+
|
348 |
+
config.update(
|
349 |
+
coords_encoding=coords_encoding,
|
350 |
+
num_frames=num_frames,
|
351 |
+
in_chans=len(bands),
|
352 |
+
)
|
353 |
+
|
354 |
+
model = PrithviMAE(**config)
|
355 |
+
|
356 |
+
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
357 |
+
print(f"\n--> Model has {total_params:,} parameters.\n")
|
358 |
+
|
359 |
+
model.to(device)
|
360 |
+
|
361 |
+
state_dict = torch.load(checkpoint, map_location=device)
|
362 |
+
# discard fixed pos_embedding weight
|
363 |
+
for k in list(state_dict.keys()):
|
364 |
+
if 'pos_embed' in k:
|
365 |
+
del state_dict[k]
|
366 |
+
model.load_state_dict(state_dict, strict=False)
|
367 |
+
print(f"Loaded checkpoint from {checkpoint}")
|
368 |
+
|
369 |
+
# Running model --------------------------------------------------------------------------------
|
370 |
+
|
371 |
+
model.eval()
|
372 |
+
channels = [bands.index(b) for b in ["B04", "B03", "B02"]] # BGR -> RGB
|
373 |
+
|
374 |
+
# Reflect pad if not divisible by img_size
|
375 |
+
original_h, original_w = input_data.shape[-2:]
|
376 |
+
pad_h = img_size - (original_h % img_size)
|
377 |
+
pad_w = img_size - (original_w % img_size)
|
378 |
+
input_data = np.pad(
|
379 |
+
input_data, ((0, 0), (0, 0), (0, 0), (0, pad_h), (0, pad_w)), mode="reflect"
|
380 |
+
)
|
381 |
+
|
382 |
+
# Build sliding window
|
383 |
+
batch = torch.tensor(input_data, device="cpu")
|
384 |
+
windows = batch.unfold(3, img_size, img_size).unfold(4, img_size, img_size)
|
385 |
+
h1, w1 = windows.shape[3:5]
|
386 |
+
windows = rearrange(
|
387 |
+
windows, "b c t h1 w1 h w -> (b h1 w1) c t h w", h=img_size, w=img_size
|
388 |
+
)
|
389 |
+
|
390 |
+
# Split into batches if number of windows > batch_size
|
391 |
+
num_batches = windows.shape[0] // batch_size if windows.shape[0] > batch_size else 1
|
392 |
+
windows = torch.tensor_split(windows, num_batches, dim=0)
|
393 |
+
|
394 |
+
temporal_coords = torch.Tensor(temporal_coords, device=device).unsqueeze(0)
|
395 |
+
location_coords = torch.Tensor(location_coords[0], device=device).unsqueeze(0)
|
396 |
+
|
397 |
+
# Run model
|
398 |
+
rec_imgs = []
|
399 |
+
mask_imgs = []
|
400 |
+
for x in windows:
|
401 |
+
rec_img, mask_img = run_model(model, x, temporal_coords, location_coords, mask_ratio, device)
|
402 |
+
rec_imgs.append(rec_img)
|
403 |
+
mask_imgs.append(mask_img)
|
404 |
+
|
405 |
+
rec_imgs = torch.concat(rec_imgs, dim=0)
|
406 |
+
mask_imgs = torch.concat(mask_imgs, dim=0)
|
407 |
+
|
408 |
+
# Build images from patches
|
409 |
+
rec_imgs = rearrange(
|
410 |
+
rec_imgs,
|
411 |
+
"(b h1 w1) c t h w -> b c t (h1 h) (w1 w)",
|
412 |
+
h=img_size,
|
413 |
+
w=img_size,
|
414 |
+
b=1,
|
415 |
+
c=len(bands),
|
416 |
+
t=num_frames,
|
417 |
+
h1=h1,
|
418 |
+
w1=w1,
|
419 |
+
)
|
420 |
+
mask_imgs = rearrange(
|
421 |
+
mask_imgs,
|
422 |
+
"(b h1 w1) c t h w -> b c t (h1 h) (w1 w)",
|
423 |
+
h=img_size,
|
424 |
+
w=img_size,
|
425 |
+
b=1,
|
426 |
+
c=len(bands),
|
427 |
+
t=num_frames,
|
428 |
+
h1=h1,
|
429 |
+
w1=w1,
|
430 |
+
)
|
431 |
+
|
432 |
+
# Cut padded images back to original size
|
433 |
+
rec_imgs_full = rec_imgs[..., :original_h, :original_w]
|
434 |
+
mask_imgs_full = mask_imgs[..., :original_h, :original_w]
|
435 |
+
batch_full = batch[..., :original_h, :original_w]
|
436 |
+
|
437 |
+
# Build output images
|
438 |
+
if rgb_outputs:
|
439 |
+
for d in meta_data:
|
440 |
+
d.update(count=3, dtype="uint8", compress="lzw", nodata=0)
|
441 |
+
|
442 |
+
save_rgb_imgs(
|
443 |
+
batch_full[0, ...],
|
444 |
+
rec_imgs_full[0, ...],
|
445 |
+
mask_imgs_full[0, ...],
|
446 |
+
channels,
|
447 |
+
mean,
|
448 |
+
std,
|
449 |
+
output_dir,
|
450 |
+
meta_data,
|
451 |
+
)
|
452 |
+
else:
|
453 |
+
for d in meta_data:
|
454 |
+
d.update(compress="lzw", nodata=0)
|
455 |
+
|
456 |
+
save_imgs(
|
457 |
+
rec_imgs_full[0, ...],
|
458 |
+
mask_imgs_full[0, ...],
|
459 |
+
mean,
|
460 |
+
std,
|
461 |
+
output_dir,
|
462 |
+
meta_data,
|
463 |
+
)
|
464 |
+
|
465 |
+
print("Done!")
|
466 |
+
|
467 |
+
|
468 |
+
if __name__ == "__main__":
|
469 |
+
parser = argparse.ArgumentParser("MAE run inference", add_help=False)
|
470 |
+
|
471 |
+
parser.add_argument(
|
472 |
+
"--data_files",
|
473 |
+
type=str,
|
474 |
+
nargs="+",
|
475 |
+
default=["examples/HLS.L30.T13REN.2018013T172747.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif",
|
476 |
+
"examples/HLS.L30.T13REN.2018029T172738.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif",
|
477 |
+
"examples/HLS.L30.T13REN.2018061T172724.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"
|
478 |
+
],
|
479 |
+
help="Path to the data files. Assumes multi-band files.",
|
480 |
+
)
|
481 |
+
parser.add_argument(
|
482 |
+
"--config",
|
483 |
+
"-c",
|
484 |
+
type=str,
|
485 |
+
default="config.json",
|
486 |
+
help="Path to json file containing model training parameters.",
|
487 |
+
)
|
488 |
+
parser.add_argument(
|
489 |
+
"--checkpoint",
|
490 |
+
type=str,
|
491 |
+
default="Prithvi_EO_V2_300M_TL.pt",
|
492 |
+
help="Path to a checkpoint file to load from.",
|
493 |
+
)
|
494 |
+
parser.add_argument(
|
495 |
+
"--output_dir",
|
496 |
+
type=str,
|
497 |
+
default="output",
|
498 |
+
help="Path to the directory where to save outputs.",
|
499 |
+
)
|
500 |
+
parser.add_argument(
|
501 |
+
"--mask_ratio",
|
502 |
+
default=0.75,
|
503 |
+
type=float,
|
504 |
+
help="Masking ratio (percentage of removed patches). "
|
505 |
+
"If None (default) use same value used for pretraining.",
|
506 |
+
)
|
507 |
+
parser.add_argument(
|
508 |
+
"--input_indices",
|
509 |
+
default=None,
|
510 |
+
type=int,
|
511 |
+
nargs="+",
|
512 |
+
help="0-based indices of channels to be selected from the input. By default takes all.",
|
513 |
+
)
|
514 |
+
parser.add_argument(
|
515 |
+
"--rgb_outputs",
|
516 |
+
action="store_true",
|
517 |
+
help="If present, output files will only contain RGB channels. "
|
518 |
+
"Otherwise, all bands will be saved.",
|
519 |
+
)
|
520 |
+
args = parser.parse_args()
|
521 |
+
|
522 |
+
main(**vars(args))
|
prithvi_mae.py
ADDED
@@ -0,0 +1,736 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) IBM Corp. 2024. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# --------------------------------------------------------
|
15 |
+
# References:
|
16 |
+
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
|
17 |
+
# transformers: https://github.com/huggingface/transformers
|
18 |
+
# --------------------------------------------------------
|
19 |
+
|
20 |
+
from functools import partial
|
21 |
+
from typing import List, Tuple
|
22 |
+
|
23 |
+
import logging
|
24 |
+
import numpy as np
|
25 |
+
import torch
|
26 |
+
import torch.nn as nn
|
27 |
+
from einops import rearrange
|
28 |
+
from timm.layers import to_2tuple
|
29 |
+
from timm.models.vision_transformer import Block
|
30 |
+
|
31 |
+
|
32 |
+
def get_3d_sincos_pos_embed(embed_dim, grid_size, add_cls_token=False):
|
33 |
+
"""
|
34 |
+
Create 3D sin/cos positional embeddings.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
embed_dim (int):
|
38 |
+
Embedding dimension.
|
39 |
+
grid_size (tuple[int, int, int] | list[int]):
|
40 |
+
The grid depth, height and width.
|
41 |
+
add_cls_token (bool, *optional*, defaults to False):
|
42 |
+
Whether or not to add a classification (CLS) token.
|
43 |
+
|
44 |
+
Returns:
|
45 |
+
(`torch.FloatTensor` of shape (grid_size[0]*grid_size[1]*grid_size[2], embed_dim) or
|
46 |
+
(1+grid_size[0]*grid_size[1]*grid_size[2], embed_dim): the position embeddings (with or without cls token)
|
47 |
+
"""
|
48 |
+
|
49 |
+
assert embed_dim % 16 == 0
|
50 |
+
|
51 |
+
t_size, h_size, w_size = grid_size
|
52 |
+
|
53 |
+
w_embed_dim = embed_dim // 16 * 6
|
54 |
+
h_embed_dim = embed_dim // 16 * 6
|
55 |
+
t_embed_dim = embed_dim // 16 * 4
|
56 |
+
|
57 |
+
w_pos_embed = get_1d_sincos_pos_embed_from_grid(w_embed_dim, np.arange(w_size))
|
58 |
+
h_pos_embed = get_1d_sincos_pos_embed_from_grid(h_embed_dim, np.arange(h_size))
|
59 |
+
t_pos_embed = get_1d_sincos_pos_embed_from_grid(t_embed_dim, np.arange(t_size))
|
60 |
+
|
61 |
+
w_pos_embed = np.tile(w_pos_embed, (t_size * h_size, 1))
|
62 |
+
h_pos_embed = np.tile(np.repeat(h_pos_embed, w_size, axis=0), (t_size, 1))
|
63 |
+
t_pos_embed = np.repeat(t_pos_embed, h_size * w_size, axis=0)
|
64 |
+
|
65 |
+
pos_embed = np.concatenate((w_pos_embed, h_pos_embed, t_pos_embed), axis=1)
|
66 |
+
|
67 |
+
if add_cls_token:
|
68 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
69 |
+
return pos_embed
|
70 |
+
|
71 |
+
|
72 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
73 |
+
"""
|
74 |
+
embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
|
75 |
+
"""
|
76 |
+
if embed_dim % 2 != 0:
|
77 |
+
raise ValueError("embed_dim must be even")
|
78 |
+
|
79 |
+
omega = np.arange(embed_dim // 2, dtype=float)
|
80 |
+
omega /= embed_dim / 2.0
|
81 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
82 |
+
|
83 |
+
pos = pos.reshape(-1) # (M,)
|
84 |
+
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
85 |
+
|
86 |
+
emb_sin = np.sin(out) # (M, D/2)
|
87 |
+
emb_cos = np.cos(out) # (M, D/2)
|
88 |
+
|
89 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
90 |
+
return emb
|
91 |
+
|
92 |
+
|
93 |
+
def _get_1d_sincos_embed_from_grid_torch(embed_dim: int, pos: torch.Tensor):
|
94 |
+
""" This is the torch version of *get_1d_sincos_pos_embed_from_grid()*. However,
|
95 |
+
it was modified to cast omega values to pos.dtype which must be float (and not int as in
|
96 |
+
regular positional embeddings). This was required in order to allow for native FSDP mixed
|
97 |
+
precision support: modify omega to appropriate dtype (pos carries the correct float dtype),
|
98 |
+
instead of manually forcing float32.
|
99 |
+
|
100 |
+
embed_dim: output dimension for each position
|
101 |
+
pos: a list of positions to be encoded: size (M,) - must be float dtype!
|
102 |
+
out: (M, D)
|
103 |
+
"""
|
104 |
+
assert embed_dim % 2 == 0
|
105 |
+
assert pos.dtype in [torch.float32, torch.float16, torch.bfloat16]
|
106 |
+
|
107 |
+
omega = torch.arange(embed_dim // 2, dtype=pos.dtype).to(pos.device)
|
108 |
+
omega /= embed_dim / 2.0
|
109 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
110 |
+
|
111 |
+
pos = pos.reshape(-1) # (M,)
|
112 |
+
out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
113 |
+
|
114 |
+
emb_sin = torch.sin(out) # (M, D/2)
|
115 |
+
emb_cos = torch.cos(out) # (M, D/2)
|
116 |
+
|
117 |
+
emb = torch.cat([emb_sin, emb_cos], dim=1) # (M, D)
|
118 |
+
|
119 |
+
return emb
|
120 |
+
|
121 |
+
|
122 |
+
def _init_weights(module):
|
123 |
+
"""Initialize the weights"""
|
124 |
+
if isinstance(module, nn.Linear):
|
125 |
+
nn.init.xavier_uniform_(module.weight)
|
126 |
+
if module.bias is not None:
|
127 |
+
module.bias.data.zero_()
|
128 |
+
elif isinstance(module, nn.LayerNorm):
|
129 |
+
module.bias.data.zero_()
|
130 |
+
module.weight.data.fill_(1.0)
|
131 |
+
|
132 |
+
|
133 |
+
class PatchEmbed(nn.Module):
|
134 |
+
"""3D version of timm.models.vision_transformer.PatchEmbed"""
|
135 |
+
def __init__(
|
136 |
+
self,
|
137 |
+
input_size: Tuple[int, int, int] = (1, 224, 224),
|
138 |
+
patch_size: Tuple[int, int, int] = (1, 16, 16),
|
139 |
+
in_chans: int = 3,
|
140 |
+
embed_dim: int = 768,
|
141 |
+
norm_layer: nn.Module | None = None,
|
142 |
+
flatten: bool = True,
|
143 |
+
bias: bool = True,
|
144 |
+
):
|
145 |
+
super().__init__()
|
146 |
+
self.input_size = input_size
|
147 |
+
self.patch_size = patch_size
|
148 |
+
self.grid_size = [s // p for s, p in zip(self.input_size, self.patch_size)]
|
149 |
+
self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
|
150 |
+
self.flatten = flatten
|
151 |
+
|
152 |
+
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias)
|
153 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
154 |
+
|
155 |
+
def forward(self, x):
|
156 |
+
B, C, T, H, W = x.shape
|
157 |
+
|
158 |
+
if T / self.patch_size[0] % 1 or H / self.patch_size[1] % 1 or W / self.patch_size[2] % 1:
|
159 |
+
logging.warning(f"Input {x.shape[-3:]} is not divisible by patch size {self.patch_size}."
|
160 |
+
f"The border will be ignored, add backbone_padding for pixel-wise tasks.")
|
161 |
+
|
162 |
+
x = self.proj(x)
|
163 |
+
if self.flatten:
|
164 |
+
x = x.flatten(2).transpose(1, 2) # B,C,T,H,W -> B,C,L -> B,L,C
|
165 |
+
x = self.norm(x)
|
166 |
+
return x
|
167 |
+
|
168 |
+
|
169 |
+
class TemporalEncoder(nn.Module):
|
170 |
+
def __init__(self, embed_dim: int, trainable_scale: bool = False):
|
171 |
+
super().__init__()
|
172 |
+
self.embed_dim = embed_dim
|
173 |
+
self.year_embed_dim = embed_dim // 2
|
174 |
+
self.julian_day_embed_dim = embed_dim - self.year_embed_dim
|
175 |
+
|
176 |
+
# If trainable, initialize scale with small number
|
177 |
+
if trainable_scale:
|
178 |
+
self.scale = nn.Parameter(torch.full((1,), 0.1))
|
179 |
+
else:
|
180 |
+
self.register_buffer('scale', torch.ones(1))
|
181 |
+
|
182 |
+
def forward(self, temporal_coords: torch.Tensor, tokens_per_frame: int | None = None):
|
183 |
+
"""
|
184 |
+
temporal_coords: year and day-of-year info with shape (B, T, 2).
|
185 |
+
tokens_per_frame: number of tokens for each frame in the sample. If provided, embeddings will be
|
186 |
+
repeated over T dimension, and final shape is (B, T*tokens_per_frame, embed_dim).
|
187 |
+
"""
|
188 |
+
shape = temporal_coords.shape[:2] + (-1,) # B, T, -1
|
189 |
+
|
190 |
+
year = _get_1d_sincos_embed_from_grid_torch(
|
191 |
+
self.year_embed_dim, temporal_coords[:, :, 0].flatten()).reshape(shape)
|
192 |
+
julian_day = _get_1d_sincos_embed_from_grid_torch(
|
193 |
+
self.julian_day_embed_dim, temporal_coords[:, :, 1].flatten()).reshape(shape)
|
194 |
+
|
195 |
+
embedding = self.scale * torch.cat([year, julian_day], dim=-1)
|
196 |
+
|
197 |
+
if tokens_per_frame is not None:
|
198 |
+
embedding = torch.repeat_interleave(embedding, tokens_per_frame, dim=1)
|
199 |
+
|
200 |
+
return embedding # B, T*tokens_per_frame, embed_dim
|
201 |
+
|
202 |
+
|
203 |
+
class LocationEncoder(nn.Module):
|
204 |
+
def __init__(self, embed_dim: int, trainable_scale: bool = False):
|
205 |
+
super().__init__()
|
206 |
+
self.embed_dim = embed_dim
|
207 |
+
self.lat_embed_dim = embed_dim // 2
|
208 |
+
self.lon_embed_dim = embed_dim - self.lat_embed_dim
|
209 |
+
|
210 |
+
# If trainable, initialize scale with small number
|
211 |
+
if trainable_scale:
|
212 |
+
self.scale = nn.Parameter(torch.full((1,), 0.1))
|
213 |
+
else:
|
214 |
+
self.register_buffer('scale', torch.ones(1))
|
215 |
+
|
216 |
+
def forward(self, location_coords: torch.Tensor):
|
217 |
+
"""
|
218 |
+
location_coords: lat and lon info with shape (B, 2).
|
219 |
+
"""
|
220 |
+
shape = location_coords.shape[:1] + (1, -1) # B, 1, -1
|
221 |
+
|
222 |
+
lat = _get_1d_sincos_embed_from_grid_torch(
|
223 |
+
self.lat_embed_dim, location_coords[:, 0].flatten()).reshape(shape)
|
224 |
+
lon = _get_1d_sincos_embed_from_grid_torch(
|
225 |
+
self.lon_embed_dim, location_coords[:, 1].flatten()).reshape(shape)
|
226 |
+
|
227 |
+
embedding = self.scale * torch.cat([lat, lon], dim=-1)
|
228 |
+
|
229 |
+
return embedding # B, 1, embed_dim
|
230 |
+
|
231 |
+
|
232 |
+
class PrithviViT(nn.Module):
|
233 |
+
""" Prithvi ViT Encoder"""
|
234 |
+
def __init__(self,
|
235 |
+
img_size: int | Tuple[int, int] = 224,
|
236 |
+
patch_size: int | Tuple[int, int, int] = (1, 16, 16),
|
237 |
+
num_frames: int = 1,
|
238 |
+
in_chans: int = 3,
|
239 |
+
embed_dim: int = 1024,
|
240 |
+
depth: int = 24,
|
241 |
+
num_heads: int = 16,
|
242 |
+
mlp_ratio: float = 4.,
|
243 |
+
norm_layer: nn.Module = partial(torch.nn.LayerNorm, eps=1e-6),
|
244 |
+
coords_encoding: List[str] | None = None,
|
245 |
+
coords_scale_learn: bool = False,
|
246 |
+
encoder_only: bool = True, # needed for timm
|
247 |
+
** kwargs,
|
248 |
+
):
|
249 |
+
super().__init__()
|
250 |
+
|
251 |
+
self.feature_info = []
|
252 |
+
self.encoder_only = encoder_only
|
253 |
+
self.in_chans = in_chans
|
254 |
+
self.num_frames = num_frames
|
255 |
+
self.embed_dim = embed_dim
|
256 |
+
self.img_size = to_2tuple(img_size)
|
257 |
+
if isinstance(patch_size, int):
|
258 |
+
patch_size = (1, patch_size, patch_size)
|
259 |
+
|
260 |
+
# 3D patch embedding
|
261 |
+
self.patch_embed = PatchEmbed(
|
262 |
+
input_size=(num_frames,) + self.img_size,
|
263 |
+
patch_size=patch_size,
|
264 |
+
in_chans=in_chans,
|
265 |
+
embed_dim=embed_dim,
|
266 |
+
)
|
267 |
+
|
268 |
+
# Optional temporal and location embedding
|
269 |
+
coords_encoding = coords_encoding or []
|
270 |
+
self.temporal_encoding = 'time' in coords_encoding
|
271 |
+
self.location_encoding = 'location' in coords_encoding
|
272 |
+
if self.temporal_encoding:
|
273 |
+
assert patch_size[0] == 1, f"With temporal encoding, patch_size[0] must be 1, received {patch_size[0]}"
|
274 |
+
self.temporal_embed_enc = TemporalEncoder(embed_dim, coords_scale_learn)
|
275 |
+
if self.location_encoding:
|
276 |
+
self.location_embed_enc = LocationEncoder(embed_dim, coords_scale_learn)
|
277 |
+
|
278 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
279 |
+
self.register_buffer("pos_embed", torch.zeros(1, self.patch_embed.num_patches + 1, embed_dim))
|
280 |
+
|
281 |
+
# Transformer layers
|
282 |
+
self.blocks = []
|
283 |
+
for i in range(depth):
|
284 |
+
self.blocks.append(Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer))
|
285 |
+
self.feature_info.append(
|
286 |
+
{"num_chs": embed_dim * self.patch_embed.patch_size[0], "reduction": 1, "module": f"blocks.{i}"}
|
287 |
+
)
|
288 |
+
self.blocks = nn.ModuleList(self.blocks)
|
289 |
+
|
290 |
+
self.norm = norm_layer(embed_dim)
|
291 |
+
|
292 |
+
self.initialize_weights()
|
293 |
+
|
294 |
+
def initialize_weights(self):
|
295 |
+
# initialize (and freeze) position embeddings by sin-cos embedding
|
296 |
+
pos_embed = get_3d_sincos_pos_embed(
|
297 |
+
self.pos_embed.shape[-1], self.patch_embed.grid_size, add_cls_token=True
|
298 |
+
)
|
299 |
+
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
|
300 |
+
|
301 |
+
# initialize patch_embeddings like nn.Linear (instead of nn.Conv2d)
|
302 |
+
w = self.patch_embed.proj.weight.data
|
303 |
+
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
|
304 |
+
|
305 |
+
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
|
306 |
+
torch.nn.init.normal_(self.cls_token, std=0.02)
|
307 |
+
self.apply(_init_weights)
|
308 |
+
|
309 |
+
def random_masking(self, sequence, mask_ratio, noise=None):
|
310 |
+
"""
|
311 |
+
Perform per-sample random masking by per-sample shuffling. Per-sample shuffling is done by argsort random
|
312 |
+
noise.
|
313 |
+
|
314 |
+
Args:
|
315 |
+
sequence (`torch.FloatTensor` of shape `(batch_size, sequence_length, dim)`)
|
316 |
+
mask_ratio (float): mask ratio to use.
|
317 |
+
noise (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*) which is
|
318 |
+
mainly used for testing purposes to control randomness and maintain the reproducibility
|
319 |
+
"""
|
320 |
+
batch_size, seq_length, dim = sequence.shape
|
321 |
+
len_keep = int(seq_length * (1 - mask_ratio))
|
322 |
+
|
323 |
+
if noise is None:
|
324 |
+
noise = torch.rand(batch_size, seq_length, device=sequence.device) # noise in [0, 1]
|
325 |
+
|
326 |
+
# sort noise for each sample
|
327 |
+
ids_shuffle = torch.argsort(noise, dim=1).to(sequence.device) # ascend: small is keep, large is remove
|
328 |
+
ids_restore = torch.argsort(ids_shuffle, dim=1).to(sequence.device)
|
329 |
+
|
330 |
+
# keep the first subset
|
331 |
+
ids_keep = ids_shuffle[:, :len_keep]
|
332 |
+
sequence_unmasked = torch.gather(sequence, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, dim))
|
333 |
+
|
334 |
+
# generate the binary mask: 0 is keep, 1 is remove
|
335 |
+
mask = torch.ones([batch_size, seq_length], device=sequence.device)
|
336 |
+
mask[:, :len_keep] = 0
|
337 |
+
# unshuffle to get the binary mask
|
338 |
+
mask = torch.gather(mask, dim=1, index=ids_restore)
|
339 |
+
|
340 |
+
return sequence_unmasked, mask, ids_restore
|
341 |
+
|
342 |
+
def _get_pos_embed(self, x):
|
343 |
+
t, h, w = x.shape[-3:]
|
344 |
+
|
345 |
+
pos_embed = torch.from_numpy(get_3d_sincos_pos_embed(
|
346 |
+
self.embed_dim,
|
347 |
+
(
|
348 |
+
t // self.patch_embed.patch_size[0],
|
349 |
+
h // self.patch_embed.patch_size[1],
|
350 |
+
w // self.patch_embed.patch_size[2],
|
351 |
+
),
|
352 |
+
add_cls_token=True,
|
353 |
+
)).float().unsqueeze(0).to(x)
|
354 |
+
|
355 |
+
return pos_embed
|
356 |
+
|
357 |
+
|
358 |
+
def forward(
|
359 |
+
self, x: torch.Tensor,
|
360 |
+
temporal_coords: None | torch.Tensor = None,
|
361 |
+
location_coords: None | torch.Tensor = None,
|
362 |
+
mask_ratio=0.75
|
363 |
+
):
|
364 |
+
if x.shape[-3:] != self.patch_embed.input_size:
|
365 |
+
# changed input size
|
366 |
+
pos_embed = self._get_pos_embed(x)
|
367 |
+
else:
|
368 |
+
pos_embed = self.pos_embed
|
369 |
+
|
370 |
+
# embed patches
|
371 |
+
x = self.patch_embed(x)
|
372 |
+
|
373 |
+
# add pos embed w/o cls token
|
374 |
+
x = x + pos_embed[:, 1:, :]
|
375 |
+
|
376 |
+
if self.temporal_encoding:
|
377 |
+
num_tokens_per_frame = x.shape[1] // self.num_frames
|
378 |
+
temporal_encoding = self.temporal_embed_enc(temporal_coords, num_tokens_per_frame)
|
379 |
+
x = x + temporal_encoding
|
380 |
+
if self.location_encoding:
|
381 |
+
location_encoding = self.location_embed_enc(location_coords)
|
382 |
+
x = x + location_encoding
|
383 |
+
|
384 |
+
# masking: length -> length * mask_ratio
|
385 |
+
x, mask, ids_restore = self.random_masking(x, mask_ratio)
|
386 |
+
|
387 |
+
# append cls token
|
388 |
+
cls_token = self.cls_token + pos_embed[:, :1, :]
|
389 |
+
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
|
390 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
391 |
+
|
392 |
+
# apply Transformer blocks
|
393 |
+
for block in self.blocks:
|
394 |
+
x = block(x)
|
395 |
+
x = self.norm(x)
|
396 |
+
|
397 |
+
return x, mask, ids_restore
|
398 |
+
|
399 |
+
def forward_features(
|
400 |
+
self,
|
401 |
+
x: torch.Tensor,
|
402 |
+
temporal_coords: None | torch.Tensor = None,
|
403 |
+
location_coords: None | torch.Tensor = None,
|
404 |
+
) -> list[torch.Tensor]:
|
405 |
+
if len(x.shape) == 4 and self.patch_embed.input_size[0] == 1:
|
406 |
+
# add time dim
|
407 |
+
x = x.unsqueeze(2)
|
408 |
+
|
409 |
+
if x.shape[-3:] != self.patch_embed.input_size:
|
410 |
+
pos_embed = self._get_pos_embed(x)
|
411 |
+
else:
|
412 |
+
pos_embed = self.pos_embed
|
413 |
+
|
414 |
+
# embed patches
|
415 |
+
x = self.patch_embed(x)
|
416 |
+
|
417 |
+
# add pos embed w/o cls token
|
418 |
+
x = x + pos_embed[:, 1:, :]
|
419 |
+
|
420 |
+
if self.temporal_encoding:
|
421 |
+
num_tokens_per_frame = x.shape[1] // self.patch_embed.num_frames
|
422 |
+
temporal_encoding = self.temporal_embed_enc(temporal_coords, num_tokens_per_frame)
|
423 |
+
x = x + temporal_encoding
|
424 |
+
if self.location_encoding:
|
425 |
+
location_encoding = self.location_embed_enc(location_coords)
|
426 |
+
x = x + location_encoding
|
427 |
+
|
428 |
+
# append cls token
|
429 |
+
cls_token = self.cls_token + pos_embed[:, :1, :]
|
430 |
+
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
|
431 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
432 |
+
|
433 |
+
# apply Transformer blocks
|
434 |
+
out = []
|
435 |
+
for block in self.blocks:
|
436 |
+
x = block(x)
|
437 |
+
out.append(x.clone())
|
438 |
+
|
439 |
+
x = self.norm(x)
|
440 |
+
out[-1] = x
|
441 |
+
return out
|
442 |
+
|
443 |
+
def prepare_features_for_image_model(self, features: list[torch.Tensor]) -> list[torch.Tensor]:
|
444 |
+
out = []
|
445 |
+
effective_time_dim = self.patch_embed.input_size[0] // self.patch_embed.patch_size[0]
|
446 |
+
for x in features:
|
447 |
+
x_no_token = x[:, 1:, :]
|
448 |
+
number_of_tokens = x_no_token.shape[1]
|
449 |
+
tokens_per_timestep = number_of_tokens // effective_time_dim
|
450 |
+
h = int(np.sqrt(tokens_per_timestep))
|
451 |
+
encoded = rearrange(
|
452 |
+
x_no_token,
|
453 |
+
"batch (t h w) e -> batch (t e) h w",
|
454 |
+
e=self.embed_dim,
|
455 |
+
t=effective_time_dim,
|
456 |
+
h=h,
|
457 |
+
)
|
458 |
+
out.append(encoded)
|
459 |
+
return out
|
460 |
+
|
461 |
+
|
462 |
+
class MAEDecoder(nn.Module):
|
463 |
+
""" Transformer Decoder used in the Prithvi MAE"""
|
464 |
+
def __init__(self,
|
465 |
+
patch_size: int | Tuple[int, int, int] = (1, 16, 16),
|
466 |
+
grid_size: List[int] | Tuple[int, int, int] = (3, 14, 14),
|
467 |
+
in_chans: int = 3,
|
468 |
+
encoder_embed_dim: int = 1024,
|
469 |
+
decoder_embed_dim: int = 512,
|
470 |
+
depth: int = 8,
|
471 |
+
num_heads: int = 16,
|
472 |
+
mlp_ratio: float = 4.,
|
473 |
+
norm_layer: nn.Module = nn.LayerNorm,
|
474 |
+
coords_encoding: List[str] | None = None,
|
475 |
+
coords_scale_learn: bool = False,
|
476 |
+
):
|
477 |
+
super().__init__()
|
478 |
+
|
479 |
+
self.decoder_embed = nn.Linear(encoder_embed_dim, decoder_embed_dim, bias=True)
|
480 |
+
self.decoder_embed_dim = decoder_embed_dim
|
481 |
+
self.grid_size = grid_size
|
482 |
+
if isinstance(patch_size, int):
|
483 |
+
patch_size = (1, patch_size, patch_size)
|
484 |
+
self.patch_size = patch_size
|
485 |
+
self.num_frames = self.grid_size[0] * patch_size[0]
|
486 |
+
num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
|
487 |
+
|
488 |
+
# Optional temporal and location embedding
|
489 |
+
coords_encoding = coords_encoding or []
|
490 |
+
self.temporal_encoding = 'time' in coords_encoding
|
491 |
+
self.location_encoding = 'location' in coords_encoding
|
492 |
+
if self.temporal_encoding:
|
493 |
+
self.temporal_embed_dec = TemporalEncoder(decoder_embed_dim, coords_scale_learn)
|
494 |
+
if self.location_encoding:
|
495 |
+
self.location_embed_dec = LocationEncoder(decoder_embed_dim, coords_scale_learn)
|
496 |
+
|
497 |
+
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
|
498 |
+
|
499 |
+
self.register_buffer("decoder_pos_embed", torch.zeros(1, num_patches + 1, decoder_embed_dim))
|
500 |
+
|
501 |
+
self.decoder_blocks = nn.ModuleList(
|
502 |
+
[Block(decoder_embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer) for _ in range(depth)]
|
503 |
+
)
|
504 |
+
|
505 |
+
self.decoder_norm = norm_layer(decoder_embed_dim)
|
506 |
+
self.decoder_pred = nn.Linear(decoder_embed_dim,
|
507 |
+
patch_size[0] * patch_size[1] * patch_size[2] * in_chans,
|
508 |
+
bias=True)
|
509 |
+
|
510 |
+
self.initialize_weights()
|
511 |
+
|
512 |
+
def initialize_weights(self):
|
513 |
+
# initialize (and freeze) position embeddings by sin-cos embedding
|
514 |
+
decoder_pos_embed = get_3d_sincos_pos_embed(
|
515 |
+
self.decoder_pos_embed.shape[-1], self.grid_size, add_cls_token=True
|
516 |
+
)
|
517 |
+
self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))
|
518 |
+
|
519 |
+
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
|
520 |
+
torch.nn.init.normal_(self.mask_token, std=0.02)
|
521 |
+
self.apply(_init_weights)
|
522 |
+
|
523 |
+
def forward(
|
524 |
+
self,
|
525 |
+
hidden_states: torch.Tensor,
|
526 |
+
ids_restore: torch.Tensor,
|
527 |
+
temporal_coords: None | torch.Tensor = None,
|
528 |
+
location_coords: None | torch.Tensor = None,
|
529 |
+
input_size: list[int] = None,
|
530 |
+
):
|
531 |
+
# embed tokens
|
532 |
+
x = self.decoder_embed(hidden_states)
|
533 |
+
|
534 |
+
t, h, w = input_size[-3:]
|
535 |
+
decoder_pos_embed = torch.from_numpy(
|
536 |
+
get_3d_sincos_pos_embed(
|
537 |
+
self.decoder_embed_dim,
|
538 |
+
(
|
539 |
+
t // self.patch_size[0],
|
540 |
+
h // self.patch_size[1],
|
541 |
+
w // self.patch_size[2],
|
542 |
+
),
|
543 |
+
add_cls_token=True,
|
544 |
+
)
|
545 |
+
).to(x)
|
546 |
+
|
547 |
+
# append mask tokens to sequence
|
548 |
+
mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1)
|
549 |
+
x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1) # no cls token
|
550 |
+
# unshuffle
|
551 |
+
x_ = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2]).to(x_.device))
|
552 |
+
x = torch.cat([x[:, :1, :], x_], dim=1) # append cls token
|
553 |
+
# add pos embed
|
554 |
+
x = x + decoder_pos_embed
|
555 |
+
|
556 |
+
# remove cls token
|
557 |
+
x_ = x[:, 1:, :]
|
558 |
+
|
559 |
+
if self.temporal_encoding:
|
560 |
+
num_tokens_per_frame = x_.shape[1] // self.num_frames
|
561 |
+
temporal_encoding = self.temporal_embed_dec(temporal_coords, num_tokens_per_frame)
|
562 |
+
# Add temporal encoding w/o cls token
|
563 |
+
x_ = x_ + temporal_encoding
|
564 |
+
if self.location_encoding:
|
565 |
+
location_encoding = self.location_embed_dec(location_coords)
|
566 |
+
# Add location encoding w/o cls token
|
567 |
+
x_ = x_ + location_encoding
|
568 |
+
|
569 |
+
# append cls token
|
570 |
+
x = torch.cat([x[:, :1, :], x_], dim=1)
|
571 |
+
|
572 |
+
# apply Transformer layers (blocks)
|
573 |
+
for block in self.decoder_blocks:
|
574 |
+
x = block(x)
|
575 |
+
x = self.decoder_norm(x)
|
576 |
+
|
577 |
+
# predictor projection
|
578 |
+
pred = self.decoder_pred(x)
|
579 |
+
|
580 |
+
# remove cls token
|
581 |
+
pred = pred[:, 1:, :]
|
582 |
+
|
583 |
+
return pred
|
584 |
+
|
585 |
+
|
586 |
+
class PrithviMAE(nn.Module):
|
587 |
+
""" Prithvi Masked Autoencoder"""
|
588 |
+
|
589 |
+
def __init__(self,
|
590 |
+
img_size: int | Tuple[int, int] = 224,
|
591 |
+
patch_size: int | Tuple[int, int, int] = (1, 16, 16),
|
592 |
+
num_frames: int = 3,
|
593 |
+
in_chans: int = 3,
|
594 |
+
embed_dim: int = 1024,
|
595 |
+
depth: int = 24,
|
596 |
+
num_heads: int = 16,
|
597 |
+
decoder_embed_dim: int = 512,
|
598 |
+
decoder_depth: int = 8,
|
599 |
+
decoder_num_heads: int = 16,
|
600 |
+
mlp_ratio: float = 4.,
|
601 |
+
norm_layer: nn.Module = partial(torch.nn.LayerNorm, eps=1e-6),
|
602 |
+
norm_pix_loss: bool = False,
|
603 |
+
coords_encoding: List[str] | None = None,
|
604 |
+
coords_scale_learn: bool = False,
|
605 |
+
encoder_only: bool = False,
|
606 |
+
**kwargs,
|
607 |
+
):
|
608 |
+
super().__init__()
|
609 |
+
|
610 |
+
self.encoder = PrithviViT(
|
611 |
+
img_size=img_size,
|
612 |
+
num_frames=num_frames,
|
613 |
+
patch_size=patch_size,
|
614 |
+
in_chans=in_chans,
|
615 |
+
embed_dim=embed_dim,
|
616 |
+
depth=depth,
|
617 |
+
num_heads=num_heads,
|
618 |
+
mlp_ratio=mlp_ratio,
|
619 |
+
norm_layer=norm_layer,
|
620 |
+
coords_encoding=coords_encoding,
|
621 |
+
coords_scale_learn=coords_scale_learn,
|
622 |
+
)
|
623 |
+
|
624 |
+
self.encoder_only = encoder_only
|
625 |
+
|
626 |
+
if not encoder_only:
|
627 |
+
self.decoder = MAEDecoder(
|
628 |
+
patch_size=patch_size,
|
629 |
+
grid_size=self.encoder.patch_embed.grid_size,
|
630 |
+
in_chans=in_chans,
|
631 |
+
encoder_embed_dim=embed_dim,
|
632 |
+
decoder_embed_dim=decoder_embed_dim,
|
633 |
+
depth=decoder_depth,
|
634 |
+
num_heads=decoder_num_heads,
|
635 |
+
mlp_ratio=mlp_ratio,
|
636 |
+
norm_layer=norm_layer,
|
637 |
+
coords_encoding=coords_encoding,
|
638 |
+
coords_scale_learn=coords_scale_learn,
|
639 |
+
)
|
640 |
+
else:
|
641 |
+
self.decoder = nn.Identity()
|
642 |
+
|
643 |
+
self.norm_pix_loss = norm_pix_loss
|
644 |
+
|
645 |
+
def patchify(self, pixel_values):
|
646 |
+
"""
|
647 |
+
Args:
|
648 |
+
pixel_values (torch.FloatTensor of shape `(batch_size, num_channels, time, height, width)`):
|
649 |
+
Pixel values.
|
650 |
+
|
651 |
+
Returns:
|
652 |
+
torch.FloatTensor of shape `(batch_size, num_patches, patch_size[0]*patch_size[1]*patch_size[2] * num_channels)`:
|
653 |
+
Patchified pixel values.
|
654 |
+
"""
|
655 |
+
patch_size_t, patch_size_h, patch_size_w = self.encoder.patch_embed.patch_size
|
656 |
+
num_channels = self.encoder.in_chans
|
657 |
+
|
658 |
+
# patchify
|
659 |
+
patchified_pixel_values = rearrange(pixel_values, 'b c (t s) (h p) (w q) -> b (t h w) (s p q c)',
|
660 |
+
c=num_channels, s=patch_size_t, p=patch_size_h, q=patch_size_w)
|
661 |
+
|
662 |
+
|
663 |
+
return patchified_pixel_values
|
664 |
+
|
665 |
+
def unpatchify(self, patchified_pixel_values, image_size: Tuple[int, int] | None = None):
|
666 |
+
"""
|
667 |
+
Args:
|
668 |
+
patchified_pixel_values (`torch.FloatTensor` of shape
|
669 |
+
`(batch_size, num_patches, patch_size[0]*patch_size[1]*patch_size[2] * num_channels)`:
|
670 |
+
Patchified pixel values.
|
671 |
+
image_size (`Tuple[int, int]`, *optional*):
|
672 |
+
Original image size.
|
673 |
+
|
674 |
+
Returns:
|
675 |
+
`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`:
|
676 |
+
Pixel values.
|
677 |
+
"""
|
678 |
+
patch_size_t, patch_size_h, patch_size_w = self.encoder.patch_embed.patch_size
|
679 |
+
image_size = to_2tuple(image_size) if image_size is not None else self.encoder.img_size
|
680 |
+
original_height, original_width = image_size
|
681 |
+
num_patches_h = original_height // patch_size_h
|
682 |
+
num_patches_w = original_width // patch_size_w
|
683 |
+
num_channels = self.encoder.in_chans
|
684 |
+
|
685 |
+
pixel_values = rearrange(patchified_pixel_values, 'b (t h w) (s p q c) -> b c (t s) (h p) (w q)',
|
686 |
+
c=num_channels, h=num_patches_h, w=num_patches_w,
|
687 |
+
s=patch_size_t, p=patch_size_h, q=patch_size_w)
|
688 |
+
return pixel_values
|
689 |
+
|
690 |
+
def forward_loss(self, pixel_values, pred, mask):
|
691 |
+
"""
|
692 |
+
Args:
|
693 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, time, height, width)`):
|
694 |
+
Pixel values.
|
695 |
+
pred (`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size[0]*patch_size[1]*patch_size[2] * num_channels)`:
|
696 |
+
Predicted pixel values.
|
697 |
+
mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
698 |
+
Tensor indicating which patches are masked (1) and which are not (0).
|
699 |
+
|
700 |
+
Returns:
|
701 |
+
`torch.FloatTensor`: Pixel reconstruction loss.
|
702 |
+
"""
|
703 |
+
target = self.patchify(pixel_values)
|
704 |
+
if self.norm_pix_loss:
|
705 |
+
mean = target.mean(dim=-1, keepdim=True)
|
706 |
+
var = target.var(dim=-1, keepdim=True)
|
707 |
+
target = (target - mean) / (var + 1.0e-6) ** 0.5
|
708 |
+
|
709 |
+
loss = (pred - target) ** 2
|
710 |
+
loss = loss.mean(dim=-1) # [N, L], mean loss per patch
|
711 |
+
loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches
|
712 |
+
return loss
|
713 |
+
|
714 |
+
def forward(
|
715 |
+
self,
|
716 |
+
pixel_values: torch.Tensor,
|
717 |
+
temporal_coords: None | torch.Tensor = None,
|
718 |
+
location_coords: None | torch.Tensor = None,
|
719 |
+
mask_ratio: float = 0.75
|
720 |
+
):
|
721 |
+
if len(pixel_values.shape) == 4 and self.encoder.patch_embed.input_size[0] == 1:
|
722 |
+
# add time dim
|
723 |
+
pixel_values = pixel_values.unsqueeze(2)
|
724 |
+
|
725 |
+
latent, mask, ids_restore = self.encoder(pixel_values, temporal_coords, location_coords, mask_ratio)
|
726 |
+
pred = self.decoder(latent, ids_restore, temporal_coords, location_coords, input_size=pixel_values.shape)
|
727 |
+
loss = self.forward_loss(pixel_values, pred, mask)
|
728 |
+
return loss, pred, mask
|
729 |
+
|
730 |
+
def forward_features(
|
731 |
+
self,
|
732 |
+
x: torch.Tensor,
|
733 |
+
temporal_coords: None | torch.Tensor = None,
|
734 |
+
location_coords: None | torch.Tensor = None,
|
735 |
+
) -> List[torch.Tensor]:
|
736 |
+
return self.encoder.forward_features(x, temporal_coords, location_coords)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
timm
|
4 |
+
einops
|
5 |
+
rasterio
|