eladven commited on
Commit
0390a16
·
1 Parent(s): 94bbbef

Evaluation results for ibm/ColD-Fusion-itr13-seed2 model as a base model for other tasks

Browse files

As part of a research effort to identify high quality models in Huggingfacethat can serve as base models for further finetuning,we evaluated this by finetuning on 36 datasets.The model ranks 1st among all tested models for the roberta-base architecture as of 13/12/2022.


To share this information with others in your model card,please add the following evaluation results to your README.md page.

For more information please see https://ibm.github.io/model-recycling/ or contact me.

Best regards,
Elad Venezian
eladv@il.ibm.com
IBM Research AI

Files changed (1) hide show
  1. README.md +1 -3
README.md CHANGED
@@ -53,7 +53,7 @@ output = model(encoded_input)
53
  ## Evaluation results
54
  ## Model Recycling
55
 
56
- [Evaluation on 36 datasets](https://ibm.github.io/model-recycling/model_gain_chart?avg=2.50&mnli_lp=nan&20_newsgroup=1.08&ag_news=-0.47&amazon_reviews_multi=0.14&anli=2.75&boolq=3.32&cb=21.52&cola=0.07&copa=24.30&dbpedia=0.17&esnli=0.05&financial_phrasebank=2.19&imdb=-0.03&isear=0.67&mnli=0.41&mrpc=-0.12&multirc=2.46&poem_sentiment=4.52&qnli=0.27&qqp=0.37&rotten_tomatoes=3.04&rte=10.99&sst2=1.18&sst_5bins=1.47&stsb=1.72&trec_coarse=-0.11&trec_fine=3.24&tweet_ev_emoji=-1.35&tweet_ev_emotion=1.22&tweet_ev_hate=-0.34&tweet_ev_irony=5.48&tweet_ev_offensive=1.49&tweet_ev_sentiment=-1.25&wic=4.58&wnli=-5.49&wsc=0.19&yahoo_answers=0.16&model_name=ibm%2FColD-Fusion-itr13-seed2&base_name=roberta-base) using ibm/ColD-Fusion-itr13-seed2 as a base model. yields average score of 78.72 in comparison to 76.22 by roberta-base.
57
 
58
  The model ranks 1st among all tested models for the roberta-base architecture as of 13/12/2022
59
  Results:
@@ -64,8 +64,6 @@ Results:
64
 
65
 
66
  For more information, see: [Model Recycling](https://ibm.github.io/model-recycling/)
67
-
68
- ```bibtex
69
  @article{ColDFusion,
70
  author = {Shachar Don-Yehiya, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, Leshem ChoshenYinhan Liu and},
71
  title = {ColD Fusion: Collaborative Descent for Distributed Multitask Finetuning},
 
53
  ## Evaluation results
54
  ## Model Recycling
55
 
56
+ [Evaluation on 36 datasets](https://ibm.github.io/model-recycling/model_gain_chart?avg=2.50&mnli_lp=nan&20_newsgroup=1.08&ag_news=-0.47&amazon_reviews_multi=0.14&anli=2.75&boolq=3.32&cb=21.52&cola=0.07&copa=24.30&dbpedia=0.17&esnli=0.05&financial_phrasebank=2.19&imdb=-0.03&isear=0.67&mnli=0.41&mrpc=-0.12&multirc=2.46&poem_sentiment=4.52&qnli=0.27&qqp=0.37&rotten_tomatoes=3.04&rte=10.99&sst2=1.18&sst_5bins=1.47&stsb=1.72&trec_coarse=-0.11&trec_fine=3.24&tweet_ev_emoji=-1.35&tweet_ev_emotion=1.22&tweet_ev_hate=-0.34&tweet_ev_irony=5.48&tweet_ev_offensive=1.49&tweet_ev_sentiment=-1.25&wic=4.58&wnli=-5.49&wsc=0.19&yahoo_answers=0.16&model_name=ibm%2FColD-Fusion-itr13-seed2&base_name=roberta-base) using ibm/ColD-Fusion-itr13-seed2 as a base model yields average score of 78.72 in comparison to 76.22 by roberta-base.
57
 
58
  The model ranks 1st among all tested models for the roberta-base architecture as of 13/12/2022
59
  Results:
 
64
 
65
 
66
  For more information, see: [Model Recycling](https://ibm.github.io/model-recycling/)
 
 
67
  @article{ColDFusion,
68
  author = {Shachar Don-Yehiya, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, Leshem ChoshenYinhan Liu and},
69
  title = {ColD Fusion: Collaborative Descent for Distributed Multitask Finetuning},