File size: 9,093 Bytes
82b26f3
 
 
 
 
130fd40
 
82b26f3
130fd40
 
82b26f3
130fd40
 
82b26f3
130fd40
 
82b26f3
130fd40
 
82b26f3
 
 
130fd40
82b26f3
 
1e5470a
6c7cd77
 
 
82b26f3
 
 
 
a09dc3b
82b26f3
7a78237
82b26f3
 
 
 
 
 
 
6c7cd77
 
 
 
 
a09dc3b
82b26f3
 
 
6c7cd77
82b26f3
 
6c7cd77
82b26f3
 
 
 
 
 
 
 
 
6c7cd77
82b26f3
 
 
 
 
 
6c7cd77
82b26f3
 
 
 
 
 
 
 
6c7cd77
82b26f3
 
 
 
 
 
1e5470a
82b26f3
 
6c7cd77
82b26f3
 
 
1e5470a
82b26f3
 
6c7cd77
82b26f3
 
 
 
 
 
 
 
 
6c7cd77
82b26f3
 
 
 
 
 
 
 
 
 
6c7cd77
82b26f3
 
 
 
 
 
 
 
 
6c7cd77
 
82b26f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c7cd77
 
82b26f3
 
 
 
 
 
 
 
6c7cd77
82b26f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e5470a
82b26f3
 
 
 
6c7cd77
82b26f3
6c7cd77
 
 
 
 
 
 
 
82b26f3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
---
base_model: ibm/biomed.sm.mv-te-84m
library_name: SmallMoleculeMultiView
license: apache-2.0
tags:
- binding-affinity-prediction
- bio-medical
- chemistry
- drug-discovery
- drug-target-interaction
- model_hub_mixin
- molecular-property-prediction
- moleculenet
- molecules
- multi-view
- multimodal
- pytorch_model_hub_mixin
- small-molecules
- virtual-screening
---

# ibm/biomed.sm.mv-te-84m-MoleculeNet-ligand_scaffold-QM7-101
`biomed.sm.mv-te-84m` is a multimodal biomedical foundation model for small molecules created using **MMELON** (**M**ulti-view **M**olecular **E**mbedding with **L**ate Fusi**on**), a flexible approach to aggregate multiple views (sequence, image, graph) of molecules in a foundation model setting. While models based on single view representation typically performs well on some downstream tasks and not others, the multi-view model performs robustly across a wide range of property prediction tasks encompassing ligand-protein binding, molecular solubility, metabolism and toxicity. It has been applied to screen compounds against a large (> 100 targets) set of G Protein-Coupled receptors (GPCRs) to identify strong binders for 33 targets related to Alzheimer’s disease, which are validated through structure-based modeling and identification of key binding motifs [Multi-view biomedical foundation models for molecule-target and property prediction](https://arxiv.org/abs/2410.19704).

- **Developers:** IBM Research
- **GitHub Repository:** [https://github.com/BiomedSciAI/biomed-multi-view](https://github.com/BiomedSciAI/biomed-multi-view)
- **Paper:** [Multi-view biomedical foundation models for molecule-target and property prediction](https://arxiv.org/abs/2410.19704)
- **Release Date**: Oct 28th, 2024
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)

## Model Description


Source code for the model and finetuning is made available in [this repository](https://github.com/BiomedSciAI/biomed-multi-view).

![SmallMoleculeMultiView Overview](https://github.com/BiomedSciAI/biomed-multi-view/blob/main/docs/overview.png?raw=true)

* Image Representation: Captures the 2D visual depiction of molecular structures, highlighting features like symmetry, bond angles, and functional groups. Molecular images are generated using RDKit and undergo data augmentation during training to enhance robustness.
* Graph Representation: Encodes molecules as undirected graphs where nodes represent atoms and edges represent bonds. Atom-specific properties (e.g., atomic number, chirality) and bond-specific properties (e.g., bond type, stereochemistry) are embedded using categorical embedding techniques.
* Text Representation: Utilizes SMILES strings to represent chemical structures, tokenized with a custom tokenizer. The sequences are embedded using a transformer-based architecture to capture the sequential nature of the chemical information.

The embeddings from these single-view pre-trained encoders are combined using an attention-based aggregator module. This module learns to weight each view appropriately, producing a unified multi-view embedding. This approach leverages the strengths of each representation to improve performance on downstream predictive tasks.

## Intended Use and Limitations

The model is intended for (1) Molecular property prediction.  The pre-trained model may be fine-tuned for both regression and classification tasks. Examples include but are not limited to binding affinity, solubility and toxicity. (2)  Pre-trained model embeddings may be used as the basis for similarity measures to search a chemical library. (3) Small molecule embeddings provided by the model may be combined with protein embeddings to fine-tune on tasks that utilize both small molecule and protein representation.  (4) Select task-specific fine-tuned models are given as examples. Through listed activities, model may aid in aspects of the molecular discovery such as lead finding or optimization.


The model’s domain of applicability is small, drug-like molecules. It is intended for use with molecules less than 1000 Da molecular weight.  The MMELON approach itself may be extended to include proteins and other macromolecules but does not at present provide embeddings for such entities.  The model is at present not intended for molecular generation.  Molecules must be given as a valid SMILES string that represents a valid chemically bonded graph. Invalid inputs will impact performance or lead to error.

## Usage

Using `SmallMoleculeMultiView` API requires the codebase [https://github.com/BiomedSciAI/biomed-multi-view](https://github.com/BiomedSciAI/biomed-multi-view)

## Installation
Follow these steps to set up the `biomed-multi-view` codebase on your system.

### Prerequisites
* Operating System: Linux or macOS
* Python Version: Python 3.11
* Conda: Anaconda or Miniconda installed
* Git: Version control to clone the repository


### Step 1: Set up the project directory
Choose a root directory where you want to install `biomed-multi-view`. For example:

```bash
export ROOT_DIR=~/biomed-multiview
mkdir -p $ROOT_DIR
```

#### Step 2: Create and activate a Conda environment
```bash
conda create -y python=3.11 --prefix $ROOT_DIR/envs/biomed-multiview
```
Activate the environment:
```bash
conda activate $ROOT_DIR/envs/biomed-multiview
```

#### Step 3: Clone the repository
Navigate to the project directory and clone the repository:
```bash
mkdir -p $ROOT_DIR/code
cd $ROOT_DIR/code

# Clone the repository using HTTPS
git clone https://github.com/BiomedSciAI/biomed-multi-view.git

# Navigate into the cloned repository
cd biomed-multi-view
```
Note: If you prefer using SSH, ensure that your SSH keys are set up with GitHub and use the following command:
```bash
git clone git@github.com:BiomedSciAI/biomed-multi-view.git
```

#### Step 4: Install package dependencies
Install the package in editable mode along with development dependencies:
``` bash
pip install -e .['dev']
```
Install additional requirements:
``` bash
pip install -r requirements.txt
```

#### Step 5: macOS-Specific instructions (Apple Silicon)
If you are using a Mac with Apple Silicon (M1/M2/M3) and the zsh shell, you may need to disable globbing for the installation command:

``` bash
noglob pip install -e .[dev]
```
Install macOS-specific requirements optimized for Apple’s Metal Performance Shaders (MPS):
```bash
pip install -r requirements-mps.txt
```

#### Step 6:  Installation verification (optional)
Verify that the installation was successful by running unit tests

```bash
python -m unittest bmfm_sm.tests.all_tests
```


### Get embedding example

You can generate embeddings for a given molecule using the pretrained model with the following code.

```python
# Necessary imports
from bmfm_sm.api.smmv_api import SmallMoleculeMultiViewModel
from bmfm_sm.core.data_modules.namespace import LateFusionStrategy

# Load Model
model = SmallMoleculeMultiViewModel.from_pretrained(
    LateFusionStrategy.ATTENTIONAL,
    model_path="ibm/biomed.sm.mv-te-84m",
    huggingface=True
)

# Load Model and get embeddings for a molecule
example_smiles = "CC(C)CC1=CC=C(C=C1)C(C)C(=O)O"
example_emb = SmallMoleculeMultiViewModel.get_embeddings(
    smiles=example_smiles,
    model_path="ibm/biomed.sm.mv-te-84m",
    huggingface=True,
)
print(example_emb.shape)
```

### Get prediction example

You can use the finetuned models to make predictions on new data.

``` python
from bmfm_sm.api.smmv_api import SmallMoleculeMultiViewModel
from bmfm_sm.api.dataset_registry import DatasetRegistry

# Initialize the dataset registry
dataset_registry = DatasetRegistry()

# Example SMILES string
example_smiles = "CC(C)C1CCC(C)CC1O"

# Get dataset information for dataset
ds = dataset_registry.get_dataset_info("QM7")

# Load the finetuned model for the dataset
finetuned_model_ds = SmallMoleculeMultiViewModel.from_finetuned(
    ds,
    model_path="ibm/biomed.sm.mv-te-84m-MoleculeNet-ligand_scaffold-QM7-101",
    inference_mode=True,
    huggingface=True
)

# Get predictions
prediction = SmallMoleculeMultiViewModel.get_predictions(
    example_smiles, ds, finetuned_model=finetuned_model_ds
)

print("Prediction:", prediction)
```


For more advanced usage, see our detailed examples at: https://github.com/BiomedSciAI/biomed-multi-view


## Citation

If you found our work useful, please consider giving a star to the repo and cite our paper:
```
@misc{suryanarayanan2024multiviewbiomedicalfoundationmodels,
      title={Multi-view biomedical foundation models for molecule-target and property prediction},
      author={Parthasarathy Suryanarayanan and Yunguang Qiu and Shreyans Sethi and Diwakar Mahajan and Hongyang Li and Yuxin Yang and Elif Eyigoz and Aldo Guzman Saenz and Daniel E. Platt and Timothy H. Rumbell and Kenney Ng and Sanjoy Dey and Myson Burch and Bum Chul Kwon and Pablo Meyer and Feixiong Cheng and Jianying Hu and Joseph A. Morrone},
      year={2024},
      eprint={2410.19704},
      archivePrefix={arXiv},
      primaryClass={q-bio.BM},
      url={https://arxiv.org/abs/2410.19704},
}
```