File size: 2,693 Bytes
304c6dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb03bb9
304c6dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c866e16
304c6dd
 
 
 
 
 
 
 
eb03bb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
304c6dd
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: mit
base_model: hyunwoongko/kobart
tags:
- generated_from_trainer
model-index:
- name: qa_kor_hospital_2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# qa_kor_hospital_2

This model is a fine-tuned version of [hyunwoongko/kobart](https://huggingface.co/hyunwoongko/kobart) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1627

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 0.11  | 100  | 1.7331          |
| No log        | 0.21  | 200  | 1.4674          |
| No log        | 0.32  | 300  | 1.3987          |
| No log        | 0.42  | 400  | 1.3671          |
| 2.0632        | 0.53  | 500  | 1.4153          |
| 2.0632        | 0.63  | 600  | 1.3083          |
| 2.0632        | 0.74  | 700  | 1.2721          |
| 2.0632        | 0.85  | 800  | 1.2572          |
| 2.0632        | 0.95  | 900  | 1.2314          |
| 1.3262        | 1.06  | 1000 | 1.2468          |
| 1.3262        | 1.16  | 1100 | 1.2230          |
| 1.3262        | 1.27  | 1200 | 1.2158          |
| 1.3262        | 1.37  | 1300 | 1.2019          |
| 1.3262        | 1.48  | 1400 | 1.2011          |
| 1.1014        | 1.59  | 1500 | 1.1909          |
| 1.1014        | 1.69  | 1600 | 1.1768          |
| 1.1014        | 1.8   | 1700 | 1.1648          |
| 1.1014        | 1.9   | 1800 | 1.1608          |
| 1.1014        | 2.01  | 1900 | 1.1736          |
| 1.0434        | 2.11  | 2000 | 1.1865          |
| 1.0434        | 2.22  | 2100 | 1.1853          |
| 1.0434        | 2.33  | 2200 | 1.1890          |
| 1.0434        | 2.43  | 2300 | 1.1765          |
| 1.0434        | 2.54  | 2400 | 1.1696          |
| 0.8701        | 2.64  | 2500 | 1.1720          |
| 0.8701        | 2.75  | 2600 | 1.1611          |
| 0.8701        | 2.85  | 2700 | 1.1641          |
| 0.8701        | 2.96  | 2800 | 1.1627          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2