File size: 3,042 Bytes
f068b2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: mit
base_model: hyunwoongko/kobart
tags:
- generated_from_trainer
model-index:
- name: qa_kor_math_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# qa_kor_math_2
This model is a fine-tuned version of [hyunwoongko/kobart](https://huggingface.co/hyunwoongko/kobart) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1234
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 0.56 | 100 | 3.2887 |
| No log | 1.13 | 200 | 0.8359 |
| No log | 1.69 | 300 | 0.4944 |
| No log | 2.26 | 400 | 0.3843 |
| 2.4704 | 2.82 | 500 | 0.3349 |
| 2.4704 | 3.39 | 600 | 0.3005 |
| 2.4704 | 3.95 | 700 | 0.2768 |
| 2.4704 | 4.52 | 800 | 0.2641 |
| 2.4704 | 5.08 | 900 | 0.2479 |
| 0.3213 | 5.65 | 1000 | 0.2335 |
| 0.3213 | 6.21 | 1100 | 0.2208 |
| 0.3213 | 6.78 | 1200 | 0.2117 |
| 0.3213 | 7.34 | 1300 | 0.2041 |
| 0.3213 | 7.91 | 1400 | 0.1964 |
| 0.2503 | 8.47 | 1500 | 0.1876 |
| 0.2503 | 9.04 | 1600 | 0.1790 |
| 0.2503 | 9.6 | 1700 | 0.1745 |
| 0.2503 | 10.17 | 1800 | 0.1673 |
| 0.2503 | 10.73 | 1900 | 0.1623 |
| 0.2141 | 11.3 | 2000 | 0.1579 |
| 0.2141 | 11.86 | 2100 | 0.1527 |
| 0.2141 | 12.43 | 2200 | 0.1494 |
| 0.2141 | 12.99 | 2300 | 0.1438 |
| 0.2141 | 13.56 | 2400 | 0.1427 |
| 0.1873 | 14.12 | 2500 | 0.1386 |
| 0.1873 | 14.69 | 2600 | 0.1347 |
| 0.1873 | 15.25 | 2700 | 0.1334 |
| 0.1873 | 15.82 | 2800 | 0.1321 |
| 0.1873 | 16.38 | 2900 | 0.1295 |
| 0.1718 | 16.95 | 3000 | 0.1276 |
| 0.1718 | 17.51 | 3100 | 0.1263 |
| 0.1718 | 18.08 | 3200 | 0.1255 |
| 0.1718 | 18.64 | 3300 | 0.1244 |
| 0.1718 | 19.21 | 3400 | 0.1240 |
| 0.1628 | 19.77 | 3500 | 0.1234 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|