Nikola299 commited on
Commit
8193ceb
1 Parent(s): 3127cc1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -162
README.md CHANGED
@@ -1,202 +1,87 @@
1
  ---
2
  base_model: INSAIT-Institute/BgGPT-7B-Instruct-v0.2
3
  library_name: peft
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
 
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
 
 
18
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
69
 
70
- ## How to Get Started with the Model
 
71
 
72
- Use the code below to get started with the model.
 
 
 
73
 
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
- ### Framework versions
201
 
202
- - PEFT 0.11.1
 
1
  ---
2
  base_model: INSAIT-Institute/BgGPT-7B-Instruct-v0.2
3
  library_name: peft
4
+ license: apache-2.0
5
+ language:
6
+ - bg
7
+ tags:
8
+ - propaganda
9
  ---
10
 
11
+ # Model Card for identrics/BG_propaganda_detector
12
 
 
13
 
14
 
15
 
16
+ ## Model Description
17
 
18
+ - **Developed by:** [`Identrics`](https://identrics.ai/)
19
+ - **Language:** Bulgarian
20
+ - **License:** apache-2.0
21
+ - **Finetuned from model:** [`INSAIT-Institute/BgGPT-7B-Instruct-v0.2`](https://huggingface.co/INSAIT-Institute/BgGPT-7B-Instruct-v0.2)
22
+ - **Context window :** 8192 tokens
23
 
24
+ ## Model Description
25
 
26
+ This model consists of a fine-tuned version of BgGPT-7B-Instruct-v0.2 for a propaganda detection task. It is effectively a multilabel classifier, determining wether a given propaganda text in Bulgarian contains or not 5 predefined propaganda types.
27
+ This model was created by [`Identrics`](https://identrics.ai/), in the scope of the Wasper project.
28
 
29
 
30
+ ## Propaganda taxonomy
 
 
 
 
 
 
31
 
32
+ The propaganda techniques we want to identify are classified in 5 categories:
33
 
34
+ 1. Self-Identification Techniques:
35
+ These techniques exploit the audience's feelings of association (or desire to be associated) with a larger group. They suggest that the audience should feel united, motivated, or threatened by the same factors that unite, motivate, or threaten that group.
36
 
 
 
 
37
 
38
+ 2. Defamation Techniques:
39
+ These techniques represent direct or indirect attacks against an entity's reputation and worth.
 
 
 
 
 
40
 
41
+ 3. Legitimisation Techniques:
42
+ These techniques attempt to prove and legitimise the propagandist's statements by using arguments that cannot be falsified because they are based on moral values or personal experiences.
43
 
44
+ 4. Logical Fallacies:
45
+ These techniques appeal to the audience's reason and masquerade as objective and factual arguments, but in reality, they exploit distractions and flawed logic.
46
 
47
+ 5. Rhetorical Devices:
48
+ These techniques seek to influence the audience and control the conversation by using linguistic methods.
49
 
 
50
 
 
51
 
 
52
 
53
+ ## Uses
 
 
 
 
54
 
55
+ To be used as a multilabel classifier to identify if the Bulgarian sample text contains one or more of the five propaganda techniques mentioned above.
56
 
57
+ ### Example
58
 
59
+ First install direct dependencies:
60
+ ```
61
+ pip install transformers torch accelerate
62
+ ```
63
 
64
+ Then the model can be downloaded and used for inference:
65
+ ```py
66
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
67
 
68
+ model = AutoModelForSequenceClassification.from_pretrained("identrics/BG_propaganda_classifier", num_labels=5)
69
+ tokenizer = AutoTokenizer.from_pretrained("identrics/BG_propaganda_classifier")
70
 
71
+ tokens = tokenizer("Газа евтин, американското ядрено гориво евтино, пълно с фотоволтаици а пък тока с 30% нагоре. Защо ?", return_tensors="pt")
72
+ output = model(**tokens)
73
+ print(output.logits)
74
+ ```
75
 
 
76
 
77
  ## Training Details
78
 
79
+ The training datasets for the model consist of a balanced set totaling 734 Bulgarian examples that include both propaganda and non-propaganda content. These examples are collected from a variety of traditional media and social media sources, ensuring a diverse range of content. Aditionally, the training dataset is enriched with AI-generated samples. The total distribution of the training data is shown in the table below:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
 
 
81
 
82
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66741cdd8123010b8f63f965/71vN4yLV9vyA5Cqc_WRRD.png)
83
 
 
84
 
85
+ The model was then tested on a smaller evaluation dataset, achieving an f1 score of 0.836. The evaluation dataset is distributed as such:
 
86
 
87
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66741cdd8123010b8f63f965/DunBsCJMZSFezNVB0Vo3a.png)