Nikola299 commited on
Commit
fd16f1b
1 Parent(s): d478c42

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +22 -4
README.md CHANGED
@@ -11,17 +11,20 @@ tags:
11
  # Model Card for identrics/BG_propaganda_detector
12
 
13
 
14
- ## Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
 
 
19
 
20
  - **Developed by:** Identrics
21
  - **Language:** Bulgarian
22
  - **License:** apache-2.0
23
  - **Finetuned from model:** INSAIT-Institute/BgGPT-7B-Instruct-v0.2
 
 
 
24
 
 
 
25
 
26
 
27
  ## Uses
@@ -30,7 +33,22 @@ To be used as a binary classifier to identify if propaganda is present in a stri
30
 
31
  ### Example
32
 
33
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
 
36
  ## Training Details
 
11
  # Model Card for identrics/BG_propaganda_detector
12
 
13
 
 
 
 
14
 
15
 
16
+ ## Model Description
17
 
18
  - **Developed by:** Identrics
19
  - **Language:** Bulgarian
20
  - **License:** apache-2.0
21
  - **Finetuned from model:** INSAIT-Institute/BgGPT-7B-Instruct-v0.2
22
+ - **Context window :** 8192 tokens
23
+
24
+ ## Model Description
25
 
26
+ This model consists of a fine-tuned version of BgGPT-7B-Instruct-v0.2 for a propaganda detection task. It is effectively a binary classifier, determining wether propaganda is present in the output string.
27
+ This model was created by [`Identrics`](https://identrics.ai/), in the scope of the Wasper project.
28
 
29
 
30
  ## Uses
 
33
 
34
  ### Example
35
 
36
+ First install direct dependencies:
37
+ ```
38
+ pip install transformers torch accelerate
39
+ ```
40
+
41
+ Then the model can be downloaded and used for inference:
42
+ ```py
43
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
44
+
45
+ model = AutoModelForSequenceClassification.from_pretrained("identrics/EN_propaganda_detector", num_labels=2)
46
+ tokenizer = AutoTokenizer.from_pretrained("identrics/EN_propaganda_detector")
47
+
48
+ tokens = tokenizer("Our country is the most powerful country in the world!", return_tensors="pt")
49
+ output = model(**tokens)
50
+ print(output.logits)
51
+ ```
52
 
53
 
54
  ## Training Details