ieborhan commited on
Commit
3245c8e
1 Parent(s): bf62124

Upload ./ with huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +43 -0
  2. clf.pkl +0 -0
  3. logs.txt +31 -0
README.md ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: sklearn
4
+ tags:
5
+ - tabular-classification
6
+ - baseline-trainer
7
+ ---
8
+
9
+ ## Baseline Model trained on irisg444_4c0 to apply classification on Species
10
+
11
+ **Metrics of the best model:**
12
+
13
+ accuracy 0.953333
14
+
15
+ recall_macro 0.953333
16
+
17
+ precision_macro 0.956229
18
+
19
+ f1_macro 0.953216
20
+
21
+ Name: LogisticRegression(class_weight='balanced', max_iter=1000), dtype: float64
22
+
23
+
24
+
25
+ **See model plot below:**
26
+
27
+ <style>#sk-container-id-2 {color: black;background-color: white;}#sk-container-id-2 pre{padding: 0;}#sk-container-id-2 div.sk-toggleable {background-color: white;}#sk-container-id-2 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-2 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-2 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-2 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-2 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-2 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-2 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-2 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-2 div.sk-item {position: relative;z-index: 1;}#sk-container-id-2 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-2 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-2 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-2 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-2 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-2 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-2 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-2 div.sk-label-container {text-align: center;}#sk-container-id-2 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-2 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-2" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float ... free_string useless
28
+ SepalLengthCm True False ... False False
29
+ SepalWidthCm True False ... False False
30
+ PetalLengthCm True False ... False False
31
+ PetalWidthCm True False ... False False[4 rows x 7 columns])),(&#x27;logisticregression&#x27;,LogisticRegression(C=1, class_weight=&#x27;balanced&#x27;,max_iter=1000))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-4" type="checkbox" ><label for="sk-estimator-id-4" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float ... free_string useless
32
+ SepalLengthCm True False ... False False
33
+ SepalWidthCm True False ... False False
34
+ PetalLengthCm True False ... False False
35
+ PetalWidthCm True False ... False False[4 rows x 7 columns])),(&#x27;logisticregression&#x27;,LogisticRegression(C=1, class_weight=&#x27;balanced&#x27;,max_iter=1000))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-5" type="checkbox" ><label for="sk-estimator-id-5" class="sk-toggleable__label sk-toggleable__label-arrow">EasyPreprocessor</label><div class="sk-toggleable__content"><pre>EasyPreprocessor(types= continuous dirty_float ... free_string useless
36
+ SepalLengthCm True False ... False False
37
+ SepalWidthCm True False ... False False
38
+ PetalLengthCm True False ... False False
39
+ PetalWidthCm True False ... False False[4 rows x 7 columns])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-6" type="checkbox" ><label for="sk-estimator-id-6" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(C=1, class_weight=&#x27;balanced&#x27;, max_iter=1000)</pre></div></div></div></div></div></div></div>
40
+
41
+ **Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain).
42
+
43
+ **Logs of training** including the models tried in the process can be found in logs.txt
clf.pkl ADDED
Binary file (6.66 kB). View file
 
logs.txt ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Logging training
2
+ Running DummyClassifier()
3
+ accuracy: 0.333 recall_macro: 0.333 precision_macro: 0.111 f1_macro: 0.167
4
+ === new best DummyClassifier() (using recall_macro):
5
+ accuracy: 0.333 recall_macro: 0.333 precision_macro: 0.111 f1_macro: 0.167
6
+
7
+ Running GaussianNB()
8
+ accuracy: 0.947 recall_macro: 0.947 precision_macro: 0.951 f1_macro: 0.946
9
+ === new best GaussianNB() (using recall_macro):
10
+ accuracy: 0.947 recall_macro: 0.947 precision_macro: 0.951 f1_macro: 0.946
11
+
12
+ Running MultinomialNB()
13
+ accuracy: 0.780 recall_macro: 0.780 precision_macro: 0.783 f1_macro: 0.780
14
+ Running DecisionTreeClassifier(class_weight='balanced', max_depth=1)
15
+ accuracy: 0.667 recall_macro: 0.667 precision_macro: 0.500 f1_macro: 0.556
16
+ Running DecisionTreeClassifier(class_weight='balanced', max_depth=5)
17
+ accuracy: 0.940 recall_macro: 0.940 precision_macro: 0.947 f1_macro: 0.939
18
+ Running DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01)
19
+ accuracy: 0.947 recall_macro: 0.947 precision_macro: 0.953 f1_macro: 0.946
20
+ Running LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000)
21
+ accuracy: 0.927 recall_macro: 0.927 precision_macro: 0.930 f1_macro: 0.926
22
+ Running LogisticRegression(class_weight='balanced', max_iter=1000)
23
+ accuracy: 0.953 recall_macro: 0.953 precision_macro: 0.956 f1_macro: 0.953
24
+ === new best LogisticRegression(class_weight='balanced', max_iter=1000) (using recall_macro):
25
+ accuracy: 0.953 recall_macro: 0.953 precision_macro: 0.956 f1_macro: 0.953
26
+
27
+
28
+ Best model:
29
+ LogisticRegression(class_weight='balanced', max_iter=1000)
30
+ Best Scores:
31
+ accuracy: 0.953 recall_macro: 0.953 precision_macro: 0.956 f1_macro: 0.953