Upload 13 files
Browse files- 1_Pooling/config.json +7 -0
- README.md +120 -1
- config.json +27 -0
- config_sentence_transformers.json +7 -0
- eval/binary_classification_evaluation_Valid_Topic_Boundaries_results.csv +11 -0
- merges.txt +0 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,122 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
---
|
9 |
+
|
10 |
+
# {MODEL_NAME}
|
11 |
+
|
12 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
+
|
14 |
+
<!--- Describe your model here -->
|
15 |
+
|
16 |
+
## Usage (Sentence-Transformers)
|
17 |
+
|
18 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
19 |
+
|
20 |
+
```
|
21 |
+
pip install -U sentence-transformers
|
22 |
+
```
|
23 |
+
|
24 |
+
Then you can use the model like this:
|
25 |
+
|
26 |
+
```python
|
27 |
+
from sentence_transformers import SentenceTransformer
|
28 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
+
|
30 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
31 |
+
embeddings = model.encode(sentences)
|
32 |
+
print(embeddings)
|
33 |
+
```
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
## Usage (HuggingFace Transformers)
|
38 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
39 |
+
|
40 |
+
```python
|
41 |
+
from transformers import AutoTokenizer, AutoModel
|
42 |
+
import torch
|
43 |
+
|
44 |
+
|
45 |
+
def cls_pooling(model_output, attention_mask):
|
46 |
+
return model_output[0][:,0]
|
47 |
+
|
48 |
+
|
49 |
+
# Sentences we want sentence embeddings for
|
50 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
51 |
+
|
52 |
+
# Load model from HuggingFace Hub
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
54 |
+
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
55 |
+
|
56 |
+
# Tokenize sentences
|
57 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
58 |
+
|
59 |
+
# Compute token embeddings
|
60 |
+
with torch.no_grad():
|
61 |
+
model_output = model(**encoded_input)
|
62 |
+
|
63 |
+
# Perform pooling. In this case, cls pooling.
|
64 |
+
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
|
65 |
+
|
66 |
+
print("Sentence embeddings:")
|
67 |
+
print(sentence_embeddings)
|
68 |
+
```
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
## Evaluation Results
|
73 |
+
|
74 |
+
<!--- Describe how your model was evaluated -->
|
75 |
+
|
76 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
77 |
+
|
78 |
+
|
79 |
+
## Training
|
80 |
+
The model was trained with the parameters:
|
81 |
+
|
82 |
+
**DataLoader**:
|
83 |
+
|
84 |
+
`torch.utils.data.dataloader.DataLoader` of length 4606 with parameters:
|
85 |
+
```
|
86 |
+
{'batch_size': 128, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
87 |
+
```
|
88 |
+
|
89 |
+
**Loss**:
|
90 |
+
|
91 |
+
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
92 |
+
|
93 |
+
Parameters of the fit()-Method:
|
94 |
+
```
|
95 |
+
{
|
96 |
+
"epochs": 10,
|
97 |
+
"evaluation_steps": 0,
|
98 |
+
"evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator",
|
99 |
+
"max_grad_norm": 1,
|
100 |
+
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
101 |
+
"optimizer_params": {
|
102 |
+
"lr": 2e-05
|
103 |
+
},
|
104 |
+
"scheduler": "WarmupLinear",
|
105 |
+
"steps_per_epoch": null,
|
106 |
+
"warmup_steps": 10000,
|
107 |
+
"weight_decay": 0.01
|
108 |
+
}
|
109 |
+
```
|
110 |
+
|
111 |
+
|
112 |
+
## Full Model Architecture
|
113 |
+
```
|
114 |
+
SentenceTransformer(
|
115 |
+
(0): Transformer({'max_seq_length': 32, 'do_lower_case': False}) with Transformer model: RobertaModel
|
116 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
117 |
+
)
|
118 |
+
```
|
119 |
+
|
120 |
+
## Citing & Authors
|
121 |
+
|
122 |
+
<!--- Describe where people can find more information -->
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "roberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.18.0",
|
24 |
+
"type_vocab_size": 1,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 50265
|
27 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.0",
|
4 |
+
"transformers": "4.18.0",
|
5 |
+
"pytorch": "1.11.0"
|
6 |
+
}
|
7 |
+
}
|
eval/binary_classification_evaluation_Valid_Topic_Boundaries_results.csv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cossim_accuracy,cossim_accuracy_threshold,cossim_f1,cossim_precision,cossim_recall,cossim_f1_threshold,cossim_ap,manhatten_accuracy,manhatten_accuracy_threshold,manhatten_f1,manhatten_precision,manhatten_recall,manhatten_f1_threshold,manhatten_ap,euclidean_accuracy,euclidean_accuracy_threshold,euclidean_f1,euclidean_precision,euclidean_recall,euclidean_f1_threshold,euclidean_ap,dot_accuracy,dot_accuracy_threshold,dot_f1,dot_precision,dot_recall,dot_f1_threshold,dot_ap
|
2 |
+
0,-1,0.5659107016300496,-0.6686546206474304,0.666981800992673,0.500354609929078,1.0,-0.9341346025466919,0.5446500611927798,0.5714032600992204,554.6317749023438,0.671988388969521,0.5100991553433712,0.9844082211197732,678.4400634765625,0.5736193076124381,0.5605953224663359,32.92254638671875,0.6669029894836346,0.5002659102995922,1.0,39.592018127441406,0.5456958977256563,0.5659107016300496,-221.24856567382812,0.6668242524524288,0.5002660046107466,0.9996456413890857,-357.8712158203125,0.5428045754967663
|
3 |
+
1,-1,0.5566973777462793,-0.6645435094833374,0.671627460393663,0.5078039927404718,0.9914953933380581,-0.8910321593284607,0.5672812901309461,0.5797306874557052,592.9730834960938,0.6691647528103468,0.5077967345441203,0.9808646350106307,665.9468994140625,0.593597203103118,0.5427002126151665,29.355512619018555,0.6666666666666666,0.5000886367665307,0.9996456413890857,38.558555603027344,0.5607687398360608,0.5496102055279943,-241.33578491210938,0.6676276276276276,0.504997274214065,0.9847625797306875,-308.189208984375,0.5646671147104413
|
4 |
+
2,-1,0.5675053153791637,-0.5427221059799194,0.6735738664066308,0.5133779264214047,0.9790928419560595,-0.8839776515960693,0.5656458174973282,0.5590007087172219,592.638916015625,0.6807833537331701,0.5200074794315632,0.9854712969525159,630.5596313476562,0.5695937409906966,0.5384479092841956,21.428802490234375,0.6678048780487805,0.5091111937523243,0.9702338766832034,36.24639129638672,0.550923871782314,0.556343019135365,-225.4939422607422,0.6768856447688565,0.5153760652093368,0.9858256555634302,-288.78167724609375,0.5629060738546662
|
5 |
+
3,-1,0.5687455705173635,-0.6343153715133667,0.6769080712021459,0.5159851301115241,0.9836995038979447,-0.8767246603965759,0.5640362927499809,0.5545712260807938,559.5557250976562,0.6791671739924511,0.517343721016509,0.9883061658398299,614.196533203125,0.565253521073003,0.5386250885896527,27.961509704589844,0.6675349277764623,0.5012446657183499,0.9989369241672572,36.62339782714844,0.5468354131040102,0.5561658398299079,-210.171875,0.6769192298074519,0.5229907264296755,0.9592487597448618,-262.146484375,0.5608718023878443
|
6 |
+
4,-1,0.5644932671863926,-0.7109887599945068,0.6789505796217206,0.5177740554624977,0.9858256555634302,-0.8839871883392334,0.5634706487611837,0.5552799433026222,506.94378662109375,0.6796999877044142,0.520429297684052,0.9794472005669738,557.572509765625,0.5664915981519962,0.5377391920623671,32.85962677001953,0.6736462093862816,0.5100218658892128,0.9918497519489724,35.07088851928711,0.5454788515677766,0.5552799433026222,-204.6407470703125,0.6776052104208417,0.5240216970166602,0.9585400425230333,-247.803955078125,0.5592167506487625
|
7 |
+
5,-1,0.5630758327427356,-0.7119669318199158,0.6736765772298768,0.5111885546588408,0.9875974486180015,-0.8984476923942566,0.560269045272406,0.5614812189936216,403.95635986328125,0.6809357889497263,0.5247410817031071,0.969525159461375,499.15191650390625,0.5670963457011828,0.5377391920623671,30.92110252380371,0.6702496118476053,0.5054945054945055,0.9943302622253721,33.7685546875,0.5445519322133844,0.5600637845499645,-176.61325073242188,0.6753870154806193,0.5106151333696244,0.997165131112686,-248.7664031982422,0.5607022192122023
|
8 |
+
6,-1,0.5652019844082211,-0.7176129221916199,0.6740947075208913,0.5120515179392824,0.9861800141743444,-0.9070214033126831,0.5609452452303537,0.5527994330262226,461.8663330078125,0.680982352215229,0.5224389320204507,0.9776754075124026,499.11627197265625,0.5633489085665988,0.5352586817859674,23.152297973632812,0.67265226886678,0.5114391143911439,0.9822820694542878,32.897403717041016,0.544441497071623,0.5503189227498229,-194.8746337890625,0.6761548667229526,0.5125251417078076,0.9932671863926293,-239.06666564941406,0.5618864624331712
|
9 |
+
7,-1,0.5584691708008505,-0.7199252247810364,0.6727272727272726,0.5112380250552689,0.9833451452870304,-0.9231226444244385,0.5583668403280241,0.5597094259390503,411.75408935546875,0.6818354190367842,0.5299665946158381,0.9557051736357194,440.1401062011719,0.5604679319419067,0.5350815024805102,30.50345230102539,0.6726446676231467,0.5075784915193071,0.9968107725017717,32.867401123046875,0.5428254410520476,0.5478384124734231,-180.131591796875,0.6750030058915474,0.510828025477707,0.9946846208362863,-233.63894653320312,0.5593979028405777
|
10 |
+
8,-1,0.56218993621545,-0.7214729189872742,0.6718544235603975,0.5073223648526487,0.9943302622253721,-0.933113157749176,0.5552267345464037,0.5522678951098512,436.1517028808594,0.6818409204602301,0.5268650947042907,0.9659815733522324,454.7770690917969,0.5558508636302701,0.5331325301204819,23.592975616455078,0.673398244981368,0.5095506639985447,0.9925584691708008,32.856590270996094,0.5387306896194584,0.5494330262225372,-181.05267333984375,0.6755158682273439,0.5121683440073193,0.9918497519489724,-231.68380737304688,0.5560685446522544
|
11 |
+
9,-1,0.5616583982990787,-0.714284360408783,0.6714645555955379,0.5075249320036265,0.9918497519489724,-0.9334131479263306,0.5553396983321912,0.5529766123316796,415.49835205078125,0.6800844825444156,0.5236273196862445,0.9698795180722891,455.8302001953125,0.5573477995247809,0.531715095676825,23.39046859741211,0.6738947114805446,0.510494615805804,0.9911410347271439,32.32262420654297,0.5394646680848874,0.5474840538625089,-178.5483856201172,0.6753434562545191,0.5116873630387144,0.9929128277817151,-228.9132537841797,0.5566476167676327
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec70b241fa802b45b3b5377a29508cf664cf1aa9a097eb56e0f0952f2b19cedf
|
3 |
+
size 498652017
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 32,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"errors": "replace", "bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "<unk>", "pad_token": "<pad>", "mask_token": "<mask>", "add_prefix_space": false, "trim_offsets": true, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "roberta-base", "tokenizer_class": "RobertaTokenizer"}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|