File size: 1,451 Bytes
3207519 987b6f5 a3988fe 3207519 38a4bc3 3207519 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import torch
class ParameterisedPolicy(torch.nn.Module):
"""
REINFORCE RL agent class.
Use ParameterisedPolicy.act(observation) method to predict action based on input state.
obs_len - length of the state vector.
act_space_len - length of the action vector.
"""
def __init__(self, obs_len=8, act_space_len=2):
super().__init__()
self.obs_len = obs_len
self.act_space_len = act_space_len
self.lin_1 = torch.nn.Linear(self.obs_len, 256)
self.rel_1 = torch.nn.ReLU()
self.lin_2 = torch.nn.Linear(256, 128)
self.rel_2 = torch.nn.ReLU()
self.lin_3 = torch.nn.Linear(128, self.act_space_len)
self.lin_4 = torch.nn.Linear(128, self.act_space_len)
self.elu = torch.nn.ELU()
def forward(self, x):
x = self.lin_1(x)
x = self.rel_1(x)
x = self.lin_2(x)
x = self.rel_2(x)
mu = self.lin_3(x)
x = self.lin_4(x)
sigma = self.elu(x) + 1.000001
return mu, sigma
def act(self, observation):
"""
Method returns action when gym state vector is passed.
"""
(mus, sigmas) = self.forward(torch.tensor(observation, dtype=torch.float32))
m = torch.distributions.normal.Normal(mus, sigmas)
action = m.sample().detach().numpy()
return action |