Create training.py
Browse files- training.py +106 -0
training.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from agent_class import ParameterisedPolicy
|
3 |
+
|
4 |
+
def create_cum_rewards(rewards, discount=DISCOUNT):
|
5 |
+
new_rews = [0]
|
6 |
+
for el in rewards[::-1]:
|
7 |
+
val = el + discount * new_rews[-1]
|
8 |
+
new_rews.append(val)
|
9 |
+
return torch.tensor(new_rews[1:][::-1], dtype=torch.float32)
|
10 |
+
|
11 |
+
|
12 |
+
def play_game(env, model, n_steps=500, render=False):
|
13 |
+
observation = env.reset()
|
14 |
+
|
15 |
+
rewards, logits = [], []
|
16 |
+
# for _ in range(n_steps):
|
17 |
+
while True:
|
18 |
+
if render:
|
19 |
+
env.render()
|
20 |
+
|
21 |
+
(mus, sigmas) = model(torch.tensor(observation, dtype=torch.float32))
|
22 |
+
|
23 |
+
m = torch.distributions.normal.Normal(mus, sigmas)
|
24 |
+
action = m.sample()
|
25 |
+
logit = m.log_prob(action)
|
26 |
+
observation, reward, done, info = env.step(action.detach().numpy())
|
27 |
+
|
28 |
+
rewards.append(reward)
|
29 |
+
logits.append(m.log_prob(action).sum())
|
30 |
+
|
31 |
+
if done:
|
32 |
+
break
|
33 |
+
env.close()
|
34 |
+
|
35 |
+
return rewards, logits
|
36 |
+
|
37 |
+
def draw_gradients_rewards(model, rewards, ep_lengths, ave_over_steps):
|
38 |
+
|
39 |
+
fig, axs = plt.subplot_mosaic([['1', '1', '2', '2'], ['3', '4', '5', '6']],
|
40 |
+
constrained_layout=False, figsize=(20, 9))
|
41 |
+
|
42 |
+
axs['1'].plot(np.array(rewards[:ave_over_steps*(len(rewards)//ave_over_steps)])\
|
43 |
+
.reshape(-1, ave_over_steps).mean(axis=-1))
|
44 |
+
axs['1'].set_title('Sum rewards per episode')
|
45 |
+
|
46 |
+
axs['1'].hlines(200, 0, len(rewards)/ave_over_steps, colors='red')
|
47 |
+
axs['1'].hlines(150, 0, len(rewards)/ave_over_steps, colors='orange')
|
48 |
+
axs['1'].hlines(0, 0, len(rewards)/ave_over_steps, colors='green')
|
49 |
+
|
50 |
+
axs['2'].plot(np.array(ep_lengths[:ave_over_steps*(len(ep_lengths)//ave_over_steps)])\
|
51 |
+
.reshape(-1, ave_over_steps).mean(axis=-1))
|
52 |
+
axs['2'].set_title('Episode length')
|
53 |
+
|
54 |
+
axs['3'].hist(model.lin_1.weight.grad.flatten().detach().numpy(), bins=50);
|
55 |
+
axs['3'].set_xlabel('Grads in dense layer 1')
|
56 |
+
|
57 |
+
axs['4'].hist(model.lin_2.weight.grad.flatten().detach().numpy(), bins=50);
|
58 |
+
axs['4'].set_xlabel('Grads in dense layer 2')
|
59 |
+
|
60 |
+
axs['5'].hist(model.lin_3.weight.grad.flatten().detach().numpy(), bins=50);
|
61 |
+
axs['5'].set_xlabel('Grads in dense layer 3')
|
62 |
+
|
63 |
+
axs['6'].hist(model.lin_4.weight.grad.flatten().detach().numpy(), bins=50);
|
64 |
+
axs['6'].set_xlabel('Grads in dense layer 4')
|
65 |
+
|
66 |
+
model = ParameterisedPolicy()
|
67 |
+
opt = torch.optim.Adam(model.parameters(), lr=0.0008)
|
68 |
+
lr_scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=4000, gamma=0.7)
|
69 |
+
rews, ep_lengths = [], []
|
70 |
+
|
71 |
+
last_max_score = 50
|
72 |
+
env = gym.make(env_name)
|
73 |
+
|
74 |
+
for _ in range(int(10e3)):
|
75 |
+
rewards, logits = play_game(env, model, render=False)
|
76 |
+
|
77 |
+
cum_rewards = create_cum_rewards(rewards, discount=DISCOUNT)
|
78 |
+
stacked_logits = torch.stack(logits).flatten()
|
79 |
+
|
80 |
+
loss = -(stacked_logits * cum_rewards).mean()
|
81 |
+
|
82 |
+
rews.append(np.sum(rewards))
|
83 |
+
ep_lengths.append(len(rewards))
|
84 |
+
|
85 |
+
opt.zero_grad()
|
86 |
+
loss.backward()
|
87 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), 50)
|
88 |
+
opt.step()
|
89 |
+
lr_scheduler.step()
|
90 |
+
|
91 |
+
if _%40 == 0:
|
92 |
+
if _ > 1:
|
93 |
+
clear_output()
|
94 |
+
draw_gradients_rewards(model, rewards=rews,
|
95 |
+
ep_lengths=ep_lengths, ave_over_steps=40)
|
96 |
+
plt.show()
|
97 |
+
|
98 |
+
if len(rews) > 40:
|
99 |
+
agg_rews = np.array(rews[-40*(len(rews)//40):])\
|
100 |
+
.reshape(-1, 40).mean(axis=-1)
|
101 |
+
if (agg_rews[-1] > last_max_score):
|
102 |
+
last_max_score = agg_rews[-1]
|
103 |
+
print('NEW BEST MODEL, STEP:', _, 'SCORE: ', last_max_score)
|
104 |
+
save_path = f'best_models/best_reinforce_lunar_lander_cont_model_{round(last_max_score,3)}.pt'
|
105 |
+
torch.save(model, save_path)
|
106 |
+
|