Initial commit
Browse files- .gitattributes +1 -0
- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 1092.62 +/- 109.37
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58ca7de2ad94eba328fef153fe6f312aea27df57a5ce0af674af38557ab99721
|
3 |
+
size 129189
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f79ab3f6950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f79ab3f69e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f79ab3f6a70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f79ab3f6b00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f79ab3f6b90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f79ab3f6c20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f79ab3f6cb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f79ab3f6d40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f79ab3f6dd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f79ab3f6e60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f79ab3f6ef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f79ab4449c0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1658470853.7086444,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAApOUtPtAYUz+0OnS+wRvrvmT1EL/MpBDAGj6QvnzNT71EH6U+KN2RQOoxvz9N/o++FhmJPw5V8b5M5Dg/REgLQKsmkL/LJJA+g8GDvmj6Hb/m/C291z/1P8qFaz6yytu+EZBdv3Q1uL/P7q4+3hshP4nr9z7DOpI/Ffvxv7p/nT8H9TM/0vowP09Zxj0DTNy+7amMP5Nw2j8K9Ks/FgF9QHHKq78csW0/LBHXvy/lqr6885C/wsravQdsHL1RJtA/8aSQP5KWq79T4tU/mgo1PxGQXb90Nbi/z+6uPt4bIT+y39C/rPjFv3DAWT+7w6S/voCyvnTYILxVJgG/7XYlP7DQWT8cLwnARrqOv6aFVj85hIO/WgnQvo+qTT/vzBO+XaSDP8ueAr8YS+4+7mvEPITRpj4Jbu2+Z5B/v2fHj74RkF2/leIxP8/urj7eGyE/8aiTPnDbdj9SmQG/S01pvTs/mL4lm+E+G74CP+ypwb4pc3K/7TW6OzV3wb4BIT/AzFCqPpfThj9c0gy/uaFCP/J0U74tV8Y+XBbyPp32Wr10hYA/U7uOPef1hT9BWys+EZBdv5XiMT/P7q4+3hshP5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAMgML7QAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAYdT89AAAAAE/V8b8AAAAAqWy0PQAAAAD0LuE/AAAAAME3/b0AAAAAViH1PwAAAADe2qG9AAAAAJej9b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUBMq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASU6ZvAAAAACfI/u/AAAAANdmjL0AAAAAGOTyPwAAAADMcPC9AAAAALdc/D8AAAAAflGwPQAAAAC9Ju2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwGXtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDnJhD0AAAAAmbzovwAAAAAixAe+AAAAAPX27T8AAAAATuXfvQAAAAA9IeA/AAAAAKk38L0AAAAA0QcBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt23jQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAlPtm9AAAAAJIEAMAAAAAAzKwbvAAAAABe1PE/AAAAAJ8pBb4AAAAA8S74PwAAAAA+Nlq9AAAAAC0g9L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJY+RMDfWMGMAWyUTegDjAF0lEdAqMx57zCk43V9lChoBkdAl85EdRzij2gHTegDaAhHQKjRw0D2alV1fZQoaAZHQJiMC4XoC+1oB03oA2gIR0Co0c8gyM1kdX2UKGgGR0CbP+xzJZGKaAdN6ANoCEdAqNUCZH/cWXV9lChoBkdAmqQZda+vhmgHTegDaAhHQKjZCDDjzZp1fZQoaAZHQJeCxzkp7TloB03oA2gIR0Co3k2sJY1YdX2UKGgGR0CYCBfzz3AVaAdN6ANoCEdAqN5WKAJ9iXV9lChoBkdAmWHyw0O3D2gHTegDaAhHQKjhl67dzn11fZQoaAZHQJdo7alDWsloB03oA2gIR0Co5aUv4/NadX2UKGgGR0CY5vhbGFSLaAdN6ANoCEdAqOraFEiMYXV9lChoBkdAmBxuOOsDGWgHTegDaAhHQKjq4qU/wAl1fZQoaAZHQJy6SY7aIvdoB03oA2gIR0Co7in2RJVbdX2UKGgGR0CbUtG6wt8NaAdN6ANoCEdAqPI0iOearnV9lChoBkdAmk0iDh99dGgHTegDaAhHQKj3bvWH1vl1fZQoaAZHQJkMdzcRDkVoB03oA2gIR0Co93bobGWEdX2UKGgGR0Ca2GUWEbo9aAdN6ANoCEdAqPqwoCuEEnV9lChoBkdAmku2VRk3CWgHTegDaAhHQKj+sjTKDCh1fZQoaAZHQJg1djSXt0FoB03oA2gIR0CpA9oQOFxodX2UKGgGR0CbPfP4mCyyaAdN6ANoCEdAqQPiO/+Kj3V9lChoBkdAmblIm1IAfmgHTegDaAhHQKkHID15B1N1fZQoaAZHQJdo3AXVLBdoB03oA2gIR0CpCzYlyBCldX2UKGgGR0CaeG1XNke7aAdN6ANoCEdAqRB3vv0AcXV9lChoBkdAnNWBXKbKBGgHTegDaAhHQKkQgDBdld11fZQoaAZHQJvDzv4M4LloB03oA2gIR0CpE7340uUVdX2UKGgGR0CZzduLrHENaAdN6ANoCEdAqRfOmHgxanV9lChoBkdAmQ5EJF9a2WgHTegDaAhHQKkdDM2WIGh1fZQoaAZHQJmoslE7W/doB03oA2gIR0CpHRTQ/oq1dX2UKGgGR0CU4PhvR7Z4aAdN6ANoCEdAqSBrVWjoIXV9lChoBkdAmR0U9ECvHWgHTegDaAhHQKkkcXm/3391fZQoaAZHQJSxBRQ79ydoB03oA2gIR0CpKaeSbH6udX2UKGgGR0CYfZ9UCJXRaAdN6ANoCEdAqSmybpeNUHV9lChoBkdAkjNkEcKgI2gHTegDaAhHQKks4oKD0191fZQoaAZHQJZMzihnJ1doB03oA2gIR0CpMOcfNiYtdX2UKGgGR0CV/yDgIhQnaAdN6ANoCEdAqTY1KK5083V9lChoBkdAl8pzUiILxGgHTegDaAhHQKk2PTbWVeN1fZQoaAZHQJTmXhhpg1FoB03oA2gIR0CpOWn0TURWdX2UKGgGR0CU/3gB91EFaAdN6ANoCEdAqT11Z5iVjnV9lChoBkdAlFks6q8142gHTegDaAhHQKlC08yvcJt1fZQoaAZHQIZ0tqk/KQtoB03oA2gIR0CpQtvwmVqvdX2UKGgGR0CXLKp/wy6+aAdN6ANoCEdAqUYow7DEWXV9lChoBkdAkyQdGNJe3WgHTegDaAhHQKlLlb5dnkF1fZQoaAZHQJW8daMaS9xoB03oA2gIR0CpUOJ3PiT/dX2UKGgGR0CTZcYuTRplaAdN6ANoCEdAqVDq4tpVTHV9lChoBkdAk8wtA1Nxl2gHTegDaAhHQKlUOXAM2FZ1fZQoaAZHQJZD7t8eCCloB03oA2gIR0CpWEvZh8YydX2UKGgGR0CYpKQIldC3aAdN6ANoCEdAqV2fazu4PXV9lChoBkdAl99a/M4cWGgHTegDaAhHQKldp+0gKWt1fZQoaAZHQJmM8pI+W4VoB03oA2gIR0CpYPrGaQV9dX2UKGgGR0CaHg1UEPlNaAdN6ANoCEdAqWUeig00nHV9lChoBkdAfJgl/H5rQGgHTegDaAhHQKlqeADq4Yt1fZQoaAZHQJaEbiaRZEFoB03oA2gIR0CpaoBLGrCFdX2UKGgGR0CWrL7qptJnaAdN6ANoCEdAqW3CeoUBXHV9lChoBkdAmOVeGoJiRWgHTegDaAhHQKlx2N5t3wF1fZQoaAZHQJiEQkX1rZdoB03oA2gIR0Cpdx6/Zdv9dX2UKGgGR0CYcoR2KVIJaAdN6ANoCEdAqXcnLFGXonV9lChoBkdAlpclOwgTy2gHTegDaAhHQKl6X+hoM8Z1fZQoaAZHQJIj47U5MlFoB03oA2gIR0CpfmbIkqtpdX2UKGgGR0CXulVf/m1ZaAdN6ANoCEdAqYPHAVO9FnV9lChoBkdAl3MxAGB4EGgHTegDaAhHQKmDzzaK1oh1fZQoaAZHQJOsa7cwg1ZoB03oA2gIR0CphxRhMJyAdX2UKGgGR0CX+ynRb8m8aAdN6ANoCEdAqYsuaDwpfHV9lChoBkdAjwhQYLsru2gHTegDaAhHQKmQgbrkbP11fZQoaAZHQJWr6pFTeftoB03oA2gIR0CpkImWD6FedX2UKGgGR0CYQ7rlNlAeaAdN6ANoCEdAqZPUDlo11nV9lChoBkdAlceA/C66KGgHTegDaAhHQKmX5bLU1AJ1fZQoaAZHQJXGsE2YOUdoB03oA2gIR0CpnTwqRU3odX2UKGgGR0CRrpGjsUqQaAdN6ANoCEdAqZ1FYyO7x3V9lChoBkdAltdpkTYdyWgHTegDaAhHQKmglU/fO2R1fZQoaAZHQJVW5lz2exxoB03oA2gIR0CppKrLhaTwdX2UKGgGR0CbZzjsUqQSaAdN6ANoCEdAqaoCONo8IXV9lChoBkdAmUDSOvMbFWgHTegDaAhHQKmqCwi7kGR1fZQoaAZHQJgYjk2gnMNoB03oA2gIR0CprVdECvHMdX2UKGgGR0Ca+jxn3+MqaAdN6ANoCEdAqbF47q6e5HV9lChoBkdAmVl6tYB/7WgHTegDaAhHQKm2vSNwR5F1fZQoaAZHQJqNo9dNWU9oB03oA2gIR0CptsXHR1HOdX2UKGgGR0CWwmzV+Zw5aAdN6ANoCEdAqboFhgE2YXV9lChoBkdAmkxTF+/gzmgHTegDaAhHQKm+A0bcXWR1fZQoaAZHQJoc4k2P1ctoB03oA2gIR0Cpw0TshPj5dX2UKGgGR0CWwH3ta6jGaAdN6ANoCEdAqcNM+C9RJnV9lChoBkdAmXYDVpblimgHTegDaAhHQKnGf779AHF1fZQoaAZHQJZ1dOYYzi1oB03oA2gIR0Cpyny+QEIPdX2UKGgGR0CVYLGb1AZ9aAdN6ANoCEdAqc+4LVnVXnV9lChoBkdAka7whr30w2gHTegDaAhHQKnPwIInjQ11fZQoaAZHQJZCWSntOVRoB03oA2gIR0Cp0w9QXQ+mdX2UKGgGR0CUh8DiOvMbaAdN6ANoCEdAqdcNQAMlTnV9lChoBkdAllEtXxOLzmgHTegDaAhHQKncQ1hsqKB1fZQoaAZHQJZROkLx7RhoB03oA2gIR0Cp3Ev9DQZ5dX2UKGgGR0CWfmGTLW7OaAdN6ANoCEdAqd+FEsrd33V9lChoBkdAleQebZvkzWgHTegDaAhHQKnjhTQ3PzF1fZQoaAZHQI7GXDJlrdpoB03oA2gIR0Cp6MCKR+z/dX2UKGgGR0CS+gPw/gR9aAdN6ANoCEdAqejJXKbKBHV9lChoBkdAkQZoL5RCQmgHTegDaAhHQKnsFfLs8gZ1fZQoaAZHQJQ8ZGQSzxBoB03oA2gIR0Cp8CFijL0SdX2UKGgGR0CUg63kPtlaaAdN6ANoCEdAqfVy94/u9nV9lChoBkdAkn+QwoLG72gHTegDaAhHQKn1ezyjHn51fZQoaAZHQJFb9JGvwE1oB03oA2gIR0Cp+M4rJ8v3dX2UKGgGR0CRPuvIwM6SaAdN6ANoCEdAqfzWM+/xlXV9lChoBkdAkubr9VFQVWgHTegDaAhHQKoCFdCVryl1fZQoaAZHQJCmAg3cYZVoB03oA2gIR0CqAh8Md92HdX2UKGgGR0CQqgKxcE/0aAdN6ANoCEdAqgVKOq//N3VlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3bcf5f4942b6380d2cf0914bc56ef25817041c0968f740a9b7af9bf956ec72f
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e8141fe33607076b2c20136cee34360690582e74eea8a01e23988d70b65a440
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f79ab3f6950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f79ab3f69e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f79ab3f6a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f79ab3f6b00>", "_build": "<function ActorCriticPolicy._build at 0x7f79ab3f6b90>", "forward": "<function ActorCriticPolicy.forward at 0x7f79ab3f6c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f79ab3f6cb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f79ab3f6d40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f79ab3f6dd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f79ab3f6e60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f79ab3f6ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f79ab4449c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658470853.7086444, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAApOUtPtAYUz+0OnS+wRvrvmT1EL/MpBDAGj6QvnzNT71EH6U+KN2RQOoxvz9N/o++FhmJPw5V8b5M5Dg/REgLQKsmkL/LJJA+g8GDvmj6Hb/m/C291z/1P8qFaz6yytu+EZBdv3Q1uL/P7q4+3hshP4nr9z7DOpI/Ffvxv7p/nT8H9TM/0vowP09Zxj0DTNy+7amMP5Nw2j8K9Ks/FgF9QHHKq78csW0/LBHXvy/lqr6885C/wsravQdsHL1RJtA/8aSQP5KWq79T4tU/mgo1PxGQXb90Nbi/z+6uPt4bIT+y39C/rPjFv3DAWT+7w6S/voCyvnTYILxVJgG/7XYlP7DQWT8cLwnARrqOv6aFVj85hIO/WgnQvo+qTT/vzBO+XaSDP8ueAr8YS+4+7mvEPITRpj4Jbu2+Z5B/v2fHj74RkF2/leIxP8/urj7eGyE/8aiTPnDbdj9SmQG/S01pvTs/mL4lm+E+G74CP+ypwb4pc3K/7TW6OzV3wb4BIT/AzFCqPpfThj9c0gy/uaFCP/J0U74tV8Y+XBbyPp32Wr10hYA/U7uOPef1hT9BWys+EZBdv5XiMT/P7q4+3hshP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAMgML7QAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAYdT89AAAAAE/V8b8AAAAAqWy0PQAAAAD0LuE/AAAAAME3/b0AAAAAViH1PwAAAADe2qG9AAAAAJej9b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUBMq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASU6ZvAAAAACfI/u/AAAAANdmjL0AAAAAGOTyPwAAAADMcPC9AAAAALdc/D8AAAAAflGwPQAAAAC9Ju2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwGXtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDnJhD0AAAAAmbzovwAAAAAixAe+AAAAAPX27T8AAAAATuXfvQAAAAA9IeA/AAAAAKk38L0AAAAA0QcBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt23jQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAlPtm9AAAAAJIEAMAAAAAAzKwbvAAAAABe1PE/AAAAAJ8pBb4AAAAA8S74PwAAAAA+Nlq9AAAAAC0g9L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJY+RMDfWMGMAWyUTegDjAF0lEdAqMx57zCk43V9lChoBkdAl85EdRzij2gHTegDaAhHQKjRw0D2alV1fZQoaAZHQJiMC4XoC+1oB03oA2gIR0Co0c8gyM1kdX2UKGgGR0CbP+xzJZGKaAdN6ANoCEdAqNUCZH/cWXV9lChoBkdAmqQZda+vhmgHTegDaAhHQKjZCDDjzZp1fZQoaAZHQJeCxzkp7TloB03oA2gIR0Co3k2sJY1YdX2UKGgGR0CYCBfzz3AVaAdN6ANoCEdAqN5WKAJ9iXV9lChoBkdAmWHyw0O3D2gHTegDaAhHQKjhl67dzn11fZQoaAZHQJdo7alDWsloB03oA2gIR0Co5aUv4/NadX2UKGgGR0CY5vhbGFSLaAdN6ANoCEdAqOraFEiMYXV9lChoBkdAmBxuOOsDGWgHTegDaAhHQKjq4qU/wAl1fZQoaAZHQJy6SY7aIvdoB03oA2gIR0Co7in2RJVbdX2UKGgGR0CbUtG6wt8NaAdN6ANoCEdAqPI0iOearnV9lChoBkdAmk0iDh99dGgHTegDaAhHQKj3bvWH1vl1fZQoaAZHQJkMdzcRDkVoB03oA2gIR0Co93bobGWEdX2UKGgGR0Ca2GUWEbo9aAdN6ANoCEdAqPqwoCuEEnV9lChoBkdAmku2VRk3CWgHTegDaAhHQKj+sjTKDCh1fZQoaAZHQJg1djSXt0FoB03oA2gIR0CpA9oQOFxodX2UKGgGR0CbPfP4mCyyaAdN6ANoCEdAqQPiO/+Kj3V9lChoBkdAmblIm1IAfmgHTegDaAhHQKkHID15B1N1fZQoaAZHQJdo3AXVLBdoB03oA2gIR0CpCzYlyBCldX2UKGgGR0CaeG1XNke7aAdN6ANoCEdAqRB3vv0AcXV9lChoBkdAnNWBXKbKBGgHTegDaAhHQKkQgDBdld11fZQoaAZHQJvDzv4M4LloB03oA2gIR0CpE7340uUVdX2UKGgGR0CZzduLrHENaAdN6ANoCEdAqRfOmHgxanV9lChoBkdAmQ5EJF9a2WgHTegDaAhHQKkdDM2WIGh1fZQoaAZHQJmoslE7W/doB03oA2gIR0CpHRTQ/oq1dX2UKGgGR0CU4PhvR7Z4aAdN6ANoCEdAqSBrVWjoIXV9lChoBkdAmR0U9ECvHWgHTegDaAhHQKkkcXm/3391fZQoaAZHQJSxBRQ79ydoB03oA2gIR0CpKaeSbH6udX2UKGgGR0CYfZ9UCJXRaAdN6ANoCEdAqSmybpeNUHV9lChoBkdAkjNkEcKgI2gHTegDaAhHQKks4oKD0191fZQoaAZHQJZMzihnJ1doB03oA2gIR0CpMOcfNiYtdX2UKGgGR0CV/yDgIhQnaAdN6ANoCEdAqTY1KK5083V9lChoBkdAl8pzUiILxGgHTegDaAhHQKk2PTbWVeN1fZQoaAZHQJTmXhhpg1FoB03oA2gIR0CpOWn0TURWdX2UKGgGR0CU/3gB91EFaAdN6ANoCEdAqT11Z5iVjnV9lChoBkdAlFks6q8142gHTegDaAhHQKlC08yvcJt1fZQoaAZHQIZ0tqk/KQtoB03oA2gIR0CpQtvwmVqvdX2UKGgGR0CXLKp/wy6+aAdN6ANoCEdAqUYow7DEWXV9lChoBkdAkyQdGNJe3WgHTegDaAhHQKlLlb5dnkF1fZQoaAZHQJW8daMaS9xoB03oA2gIR0CpUOJ3PiT/dX2UKGgGR0CTZcYuTRplaAdN6ANoCEdAqVDq4tpVTHV9lChoBkdAk8wtA1Nxl2gHTegDaAhHQKlUOXAM2FZ1fZQoaAZHQJZD7t8eCCloB03oA2gIR0CpWEvZh8YydX2UKGgGR0CYpKQIldC3aAdN6ANoCEdAqV2fazu4PXV9lChoBkdAl99a/M4cWGgHTegDaAhHQKldp+0gKWt1fZQoaAZHQJmM8pI+W4VoB03oA2gIR0CpYPrGaQV9dX2UKGgGR0CaHg1UEPlNaAdN6ANoCEdAqWUeig00nHV9lChoBkdAfJgl/H5rQGgHTegDaAhHQKlqeADq4Yt1fZQoaAZHQJaEbiaRZEFoB03oA2gIR0CpaoBLGrCFdX2UKGgGR0CWrL7qptJnaAdN6ANoCEdAqW3CeoUBXHV9lChoBkdAmOVeGoJiRWgHTegDaAhHQKlx2N5t3wF1fZQoaAZHQJiEQkX1rZdoB03oA2gIR0Cpdx6/Zdv9dX2UKGgGR0CYcoR2KVIJaAdN6ANoCEdAqXcnLFGXonV9lChoBkdAlpclOwgTy2gHTegDaAhHQKl6X+hoM8Z1fZQoaAZHQJIj47U5MlFoB03oA2gIR0CpfmbIkqtpdX2UKGgGR0CXulVf/m1ZaAdN6ANoCEdAqYPHAVO9FnV9lChoBkdAl3MxAGB4EGgHTegDaAhHQKmDzzaK1oh1fZQoaAZHQJOsa7cwg1ZoB03oA2gIR0CphxRhMJyAdX2UKGgGR0CX+ynRb8m8aAdN6ANoCEdAqYsuaDwpfHV9lChoBkdAjwhQYLsru2gHTegDaAhHQKmQgbrkbP11fZQoaAZHQJWr6pFTeftoB03oA2gIR0CpkImWD6FedX2UKGgGR0CYQ7rlNlAeaAdN6ANoCEdAqZPUDlo11nV9lChoBkdAlceA/C66KGgHTegDaAhHQKmX5bLU1AJ1fZQoaAZHQJXGsE2YOUdoB03oA2gIR0CpnTwqRU3odX2UKGgGR0CRrpGjsUqQaAdN6ANoCEdAqZ1FYyO7x3V9lChoBkdAltdpkTYdyWgHTegDaAhHQKmglU/fO2R1fZQoaAZHQJVW5lz2exxoB03oA2gIR0CppKrLhaTwdX2UKGgGR0CbZzjsUqQSaAdN6ANoCEdAqaoCONo8IXV9lChoBkdAmUDSOvMbFWgHTegDaAhHQKmqCwi7kGR1fZQoaAZHQJgYjk2gnMNoB03oA2gIR0CprVdECvHMdX2UKGgGR0Ca+jxn3+MqaAdN6ANoCEdAqbF47q6e5HV9lChoBkdAmVl6tYB/7WgHTegDaAhHQKm2vSNwR5F1fZQoaAZHQJqNo9dNWU9oB03oA2gIR0CptsXHR1HOdX2UKGgGR0CWwmzV+Zw5aAdN6ANoCEdAqboFhgE2YXV9lChoBkdAmkxTF+/gzmgHTegDaAhHQKm+A0bcXWR1fZQoaAZHQJoc4k2P1ctoB03oA2gIR0Cpw0TshPj5dX2UKGgGR0CWwH3ta6jGaAdN6ANoCEdAqcNM+C9RJnV9lChoBkdAmXYDVpblimgHTegDaAhHQKnGf779AHF1fZQoaAZHQJZ1dOYYzi1oB03oA2gIR0Cpyny+QEIPdX2UKGgGR0CVYLGb1AZ9aAdN6ANoCEdAqc+4LVnVXnV9lChoBkdAka7whr30w2gHTegDaAhHQKnPwIInjQ11fZQoaAZHQJZCWSntOVRoB03oA2gIR0Cp0w9QXQ+mdX2UKGgGR0CUh8DiOvMbaAdN6ANoCEdAqdcNQAMlTnV9lChoBkdAllEtXxOLzmgHTegDaAhHQKncQ1hsqKB1fZQoaAZHQJZROkLx7RhoB03oA2gIR0Cp3Ev9DQZ5dX2UKGgGR0CWfmGTLW7OaAdN6ANoCEdAqd+FEsrd33V9lChoBkdAleQebZvkzWgHTegDaAhHQKnjhTQ3PzF1fZQoaAZHQI7GXDJlrdpoB03oA2gIR0Cp6MCKR+z/dX2UKGgGR0CS+gPw/gR9aAdN6ANoCEdAqejJXKbKBHV9lChoBkdAkQZoL5RCQmgHTegDaAhHQKnsFfLs8gZ1fZQoaAZHQJQ8ZGQSzxBoB03oA2gIR0Cp8CFijL0SdX2UKGgGR0CUg63kPtlaaAdN6ANoCEdAqfVy94/u9nV9lChoBkdAkn+QwoLG72gHTegDaAhHQKn1ezyjHn51fZQoaAZHQJFb9JGvwE1oB03oA2gIR0Cp+M4rJ8v3dX2UKGgGR0CRPuvIwM6SaAdN6ANoCEdAqfzWM+/xlXV9lChoBkdAkubr9VFQVWgHTegDaAhHQKoCFdCVryl1fZQoaAZHQJCmAg3cYZVoB03oA2gIR0CqAh8Md92HdX2UKGgGR0CQqgKxcE/0aAdN6ANoCEdAqgVKOq//N3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bed77da2b06e31c780d3813f7ea9bcdc866535af7e7f017a74d1469cdb68a343
|
3 |
+
size 1142972
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1092.621226156177, "std_reward": 109.36720777492769, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-22T07:19:25.118992"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4b71d33594e914ff9ef7a97d25211c199cb102ac6a40ca69995b188f7a16711
|
3 |
+
size 2763
|