ihanif commited on
Commit
5873f1b
·
1 Parent(s): f31ba85

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -4
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  metrics:
22
  - name: Wer
23
  type: wer
24
- value: 63.62742130750605
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the fleurs dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 1.0214
35
- - Wer: 63.6274
36
 
37
  ## Model description
38
 
@@ -60,7 +60,7 @@ The following hyperparameters were used during training:
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_steps: 10
63
- - training_steps: 600
64
  - mixed_precision_training: Native AMP
65
 
66
  ### Training results
@@ -73,6 +73,7 @@ The following hyperparameters were used during training:
73
  | 0.8882 | 57.14 | 400 | 1.0769 | 66.4290 |
74
  | 0.8609 | 71.43 | 500 | 1.0575 | 66.1965 |
75
  | 0.8262 | 85.71 | 600 | 1.0214 | 63.6274 |
 
76
 
77
 
78
  ### Framework versions
 
21
  metrics:
22
  - name: Wer
23
  type: wer
24
+ value: 63.10532687651331
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the fleurs dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 1.0063
35
+ - Wer: 63.1053
36
 
37
  ## Model description
38
 
 
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_steps: 10
63
+ - training_steps: 700
64
  - mixed_precision_training: Native AMP
65
 
66
  ### Training results
 
73
  | 0.8882 | 57.14 | 400 | 1.0769 | 66.4290 |
74
  | 0.8609 | 71.43 | 500 | 1.0575 | 66.1965 |
75
  | 0.8262 | 85.71 | 600 | 1.0214 | 63.6274 |
76
+ | 0.7989 | 100.0 | 700 | 1.0063 | 63.1053 |
77
 
78
 
79
  ### Framework versions