Update README.md
Browse files
README.md
CHANGED
@@ -10,25 +10,25 @@ pipeline_tag: text2text-generation
|
|
10 |
from transformers import pipeline
|
11 |
|
12 |
# Load the model from the Hugging Face Model Hub
|
13 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
14 |
-
tokenizer = AutoTokenizer.from_pretrained("ihgn/similar-questions")
|
15 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("ihgn/similar-questions")
|
16 |
-
model = pipeline("text2text-generation", model=model_name)
|
17 |
|
18 |
# Configure the generation parameters
|
19 |
-
generation_config = {
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
}
|
27 |
|
28 |
# Generate text using the configured parameters
|
29 |
-
input_text= "Your input text goes here."
|
30 |
-
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
31 |
-
generated_ids = model(input_ids, **generation_config)
|
32 |
-
generated_text = tokenizer.decode(generated_ids.squeeze(), skip_special_tokens=True)
|
33 |
# Print the generated text
|
34 |
-
print(generated_text)
|
|
|
10 |
from transformers import pipeline
|
11 |
|
12 |
# Load the model from the Hugging Face Model Hub
|
13 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained("ihgn/similar-questions")
|
15 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("ihgn/similar-questions")
|
16 |
+
model = pipeline("text2text-generation", model=model_name)
|
17 |
|
18 |
# Configure the generation parameters
|
19 |
+
generation_config = {
|
20 |
+
"max_length": 512,
|
21 |
+
"num_beams": 1,
|
22 |
+
"top_k": 50,
|
23 |
+
"top_p": 0.92,
|
24 |
+
"do_sample": True,
|
25 |
+
"num_return_sequences": 1
|
26 |
+
}
|
27 |
|
28 |
# Generate text using the configured parameters
|
29 |
+
input_text= "Your input text goes here."
|
30 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
31 |
+
generated_ids = model(input_ids, **generation_config)
|
32 |
+
generated_text = tokenizer.decode(generated_ids.squeeze(), skip_special_tokens=True)
|
33 |
# Print the generated text
|
34 |
+
print(generated_text)
|