ihgn commited on
Commit
f00cc78
·
1 Parent(s): cd7b9bb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -17
README.md CHANGED
@@ -10,25 +10,25 @@ pipeline_tag: text2text-generation
10
  from transformers import pipeline
11
 
12
  # Load the model from the Hugging Face Model Hub
13
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
14
- tokenizer = AutoTokenizer.from_pretrained("ihgn/similar-questions")
15
- model = AutoModelForSeq2SeqLM.from_pretrained("ihgn/similar-questions")
16
- model = pipeline("text2text-generation", model=model_name)
17
 
18
  # Configure the generation parameters
19
- generation_config = {
20
- "max_length": 512,
21
- "num_beams": 1,
22
- "top_k": 50,
23
- "top_p": 0.92,
24
- "do_sample": True,
25
- "num_return_sequences": 1
26
- }
27
 
28
  # Generate text using the configured parameters
29
- input_text= "Your input text goes here."
30
- input_ids = tokenizer.encode(input_text, return_tensors="pt")
31
- generated_ids = model(input_ids, **generation_config)
32
- generated_text = tokenizer.decode(generated_ids.squeeze(), skip_special_tokens=True)
33
  # Print the generated text
34
- print(generated_text)
 
10
  from transformers import pipeline
11
 
12
  # Load the model from the Hugging Face Model Hub
13
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
14
+ tokenizer = AutoTokenizer.from_pretrained("ihgn/similar-questions")
15
+ model = AutoModelForSeq2SeqLM.from_pretrained("ihgn/similar-questions")
16
+ model = pipeline("text2text-generation", model=model_name)
17
 
18
  # Configure the generation parameters
19
+ generation_config = {
20
+ "max_length": 512,
21
+ "num_beams": 1,
22
+ "top_k": 50,
23
+ "top_p": 0.92,
24
+ "do_sample": True,
25
+ "num_return_sequences": 1
26
+ }
27
 
28
  # Generate text using the configured parameters
29
+ input_text= "Your input text goes here."
30
+ input_ids = tokenizer.encode(input_text, return_tensors="pt")
31
+ generated_ids = model(input_ids, **generation_config)
32
+ generated_text = tokenizer.decode(generated_ids.squeeze(), skip_special_tokens=True)
33
  # Print the generated text
34
+ print(generated_text)