Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,89 @@
|
|
1 |
---
|
2 |
license: afl-3.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: afl-3.0
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
pipeline_tag: fill-mask
|
6 |
+
tags:
|
7 |
+
- Chinese Spell Correction
|
8 |
+
- csc
|
9 |
+
- Chinese Spell Checking
|
10 |
---
|
11 |
+
|
12 |
+
# ChienseBERT-for-csc
|
13 |
+
|
14 |
+
中文拼写纠错(Chinese Spell Checking, CSC)模型
|
15 |
+
|
16 |
+
该模型源于SCOPE论文的复现。
|
17 |
+
|
18 |
+
原论文为:https://arxiv.org/pdf/2210.10996.pdf
|
19 |
+
|
20 |
+
原论文官方代码为:https://github.com/jiahaozhenbang/SCOPE
|
21 |
+
|
22 |
+
本模型并没有完全复现作者的结果,最终效果比论文中差了一个点,具体原因可参考[#7](https://github.com/jiahaozhenbang/SCOPE/issues/7)。
|
23 |
+
|
24 |
+
本模型在SIGHAN2015上的表现如下:
|
25 |
+
|
26 |
+
| | Detect-Acc | Detect-Precision | Detect-Recall | Detect-F1 | Correct-Acc | Correct-Precision | Correct-Recall | Correct-F1 |
|
27 |
+
|--|--|--|--|--|--|--|--|--|
|
28 |
+
| Chararcter-level | - | - | - | 87.16 | - | - | - | 91.39 |
|
29 |
+
| Sentence-level | 86.27 | 79.75 | 82.99 | 81.34 | 85.45 | 78.15 | 81.33 | 79.71 |
|
30 |
+
|
31 |
+
|
32 |
+
若去掉SCOPE论文中在推理阶段使用的CIC,则在SIGHAN2015上表现如下:
|
33 |
+
|
34 |
+
| | Detect-Acc | Detect-Precision | Detect-Recall | Detect-F1 | Correct-Acc | Correct-Precision | Correct-Recall | Correct-F1 |
|
35 |
+
|--|--|--|--|--|--|--|--|--|
|
36 |
+
| Chararcter-level | - | - | - | 86.46 | - | - | - | 91.13 |
|
37 |
+
| Sentence-level | 85.36 | 78.19 | 82.44 | 80.22 | 85.55 | 76.53 | 80.78 | 78.60 |
|
38 |
+
|
39 |
+
|
40 |
+
> 本模型非官方模型,将其中SCOPE部分的拼音辅助训练任务和损失函数计算等相关代码去掉,仅保留了ChineseBERT的部分。
|
41 |
+
|
42 |
+
# 模型使用方法
|
43 |
+
|
44 |
+
```
|
45 |
+
from transformers import AutoTokenizer, AutoModel
|
46 |
+
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained("iioSnail/ChineseBERT-for-csc", trust_remote_code=True)
|
48 |
+
model = AutoModel.from_pretrained("iioSnail/ChineseBERT-for-csc", trust_remote_code=True)
|
49 |
+
|
50 |
+
inputs = tokenizer(["我是炼习时长两念半的个人练习生蔡徐坤"], return_tensors='pt')
|
51 |
+
output_hidden = model(**inputs).logits
|
52 |
+
print(''.join(tokenizer.convert_ids_to_tokens(output_hidden.argmax(-1)[0, 1:-1])))
|
53 |
+
```
|
54 |
+
|
55 |
+
输出:
|
56 |
+
|
57 |
+
```
|
58 |
+
我是练习时长两年半的个人练习生蔡徐坤
|
59 |
+
```
|
60 |
+
|
61 |
+
你也可以使用本模型封装的`predict`方法,其中封装了作者提出的CIC方法,可以解决连续错字问题。
|
62 |
+
|
63 |
+
```
|
64 |
+
from transformers import AutoTokenizer, AutoModel
|
65 |
+
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained("iioSnail/ChineseBERT-for-csc", trust_remote_code=True)
|
67 |
+
model = AutoModel.from_pretrained("iioSnail/ChineseBERT-for-csc", trust_remote_code=True)
|
68 |
+
|
69 |
+
model.set_tokenizer(tokenizer) # 使用predict方法前,调用该方法
|
70 |
+
print(model.predict("我是练习时长两念半的鸽仁练习生蔡徐坤", window=0)) # 将窗口设置为0,不使用CIC
|
71 |
+
print(model.predict("我是练习时长两念半的鸽仁练习生蔡徐坤")) # window默认为1,可以连续处理两个汉字
|
72 |
+
```
|
73 |
+
|
74 |
+
输出:
|
75 |
+
|
76 |
+
```
|
77 |
+
我是练习时长两年半的鸽人练习生蔡徐坤
|
78 |
+
我是练习时长两年半的个人练习生蔡徐坤
|
79 |
+
```
|
80 |
+
|
81 |
+
# 常见问题
|
82 |
+
|
83 |
+
1. 网络问题,例如:`Connection Error`
|
84 |
+
|
85 |
+
解决方案:将模型下载到本地使用。批量下载方案可参考该[博客](https://blog.csdn.net/zhaohongfei_358/article/details/126222999)
|
86 |
+
|
87 |
+
2. 将模型下载到本地使用时出现报错:`ModuleNotFoundError: No module named 'transformers_modules.iioSnail/ChineseBERT-for-csc'`
|
88 |
+
|
89 |
+
解决方案:将 `iioSnail/ChineseBERT-for-csc` 改为 `iioSnail\ChineseBERT-for-csc`
|