File size: 15,250 Bytes
7436a15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119d519
 
 
7436a15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import os
from copy import deepcopy

import numpy as np
import opencc
import pypinyin
import torch
from PIL import ImageFont
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.modeling_outputs import MaskedLMOutput

from transformers import BertPreTrainedModel, BertModel


def _is_chinese_char(cp):
    if ((cp >= 0x4E00 and cp <= 0x9FFF) or  #
            (cp >= 0x3400 and cp <= 0x4DBF) or  #
            (cp >= 0x20000 and cp <= 0x2A6DF) or  #
            (cp >= 0x2A700 and cp <= 0x2B73F) or  #
            (cp >= 0x2B740 and cp <= 0x2B81F) or  #
            (cp >= 0x2B820 and cp <= 0x2CEAF) or
            (cp >= 0xF900 and cp <= 0xFAFF) or  #
            (cp >= 0x2F800 and cp <= 0x2FA1F)):  #
        return True
    return False


class Pinyin2(object):
    def __init__(self):
        super(Pinyin2, self).__init__()
        pho_vocab = ['P']
        pho_vocab += [chr(x) for x in range(ord('1'), ord('5') + 1)]
        pho_vocab += [chr(x) for x in range(ord('a'), ord('z') + 1)]
        pho_vocab += ['U']
        assert len(pho_vocab) == 33
        self.pho_vocab_size = len(pho_vocab)
        self.pho_vocab = {c: idx for idx, c in enumerate(pho_vocab)}

    def get_pho_size(self):
        return self.pho_vocab_size

    @staticmethod
    def get_pinyin(c):
        if len(c) > 1:
            return 'U'
        s = pypinyin.pinyin(
            c,
            style=pypinyin.Style.TONE3,
            neutral_tone_with_five=True,
            errors=lambda x: ['U' for _ in x],
        )[0][0]
        if s == 'U':
            return s
        assert isinstance(s, str)
        assert s[-1] in '12345'
        s = s[-1] + s[:-1]
        return s

    def convert(self, chars):
        pinyins = list(map(self.get_pinyin, chars))
        pinyin_ids = [list(map(self.pho_vocab.get, pinyin)) for pinyin in pinyins]
        pinyin_lens = [len(pinyin) for pinyin in pinyins]
        pinyin_ids = torch.nn.utils.rnn.pad_sequence(
            [torch.tensor(x) for x in pinyin_ids],
            batch_first=True,
            padding_value=0,
        )
        return pinyin_ids, pinyin_lens


pho2_convertor = Pinyin2()


class CharResNet(torch.nn.Module):

    def __init__(self, in_channels=1):
        super().__init__()
        # input_image: bxcx32x32, output_image: bx768x1x1
        self.res_block1 = BasicBlock(in_channels, 64, stride=2)  # channels: 64, size: 16x16
        self.res_block2 = BasicBlock(64, 128, stride=2)  # channels: 128, size: 8x8
        self.res_block3 = BasicBlock(128, 256, stride=2)  # channels: 256, size: 4x4
        self.res_block4 = BasicBlock(256, 512, stride=2)  # channels: 512, size: 2x2
        self.res_block5 = BasicBlock(512, 768, stride=2)  # channels: 768, size: 1x1

    def forward(self, x):
        # input_shape: bxcx32x32, output_image: bx768
        # x = x.unsqueeze(1)
        h = self.res_block1(x)
        h = self.res_block2(h)
        h = self.res_block3(h)
        h = self.res_block4(h)
        h = self.res_block5(h)
        h = h.squeeze(-1).squeeze(-1)
        return h


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_channels, out_channels, stride=1):
        super().__init__()

        self.residual_function = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(out_channels, out_channels * BasicBlock.expansion, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(out_channels * BasicBlock.expansion)
        )

        self.shortcut = nn.Sequential()

        if stride != 1 or in_channels != BasicBlock.expansion * out_channels:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channels, out_channels * BasicBlock.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channels * BasicBlock.expansion)
            )

    def forward(self, x):
        return nn.ReLU(inplace=True)(self.residual_function(x) + self.shortcut(x))


class CharResNet1(torch.nn.Module):

    def __init__(self, in_channels=1):
        super().__init__()
        self.res_block1 = BasicBlock(in_channels, 64, stride=2)  # channels: 64, size: 16x16
        self.res_block2 = BasicBlock(64, 128, stride=2)  # channels:  128, size: 8x8
        self.res_block3 = BasicBlock(128, 192, stride=2)  # channels: 256, size: 4x4
        self.res_block4 = BasicBlock(192, 192, stride=2)

    def forward(self, x):
        # input_shape: bxcx32x32, output_shape: bx128x8x8
        h = x
        h = self.res_block1(h)
        h = self.res_block2(h)
        h = self.res_block3(h)
        h = self.res_block4(h)
        h = h.view(h.shape[0], -1)
        return h


class ReaLiseForCSC(BertPreTrainedModel):

    def __init__(self, config):
        super(ReaLiseForCSC, self).__init__(config)
        self.config = config

        self.vocab_size = config.vocab_size
        self.bert = BertModel(config)

        self.pho_embeddings = nn.Embedding(pho2_convertor.get_pho_size(), config.hidden_size, padding_idx=0)
        self.pho_gru = nn.GRU(
            input_size=config.hidden_size,
            hidden_size=config.hidden_size,
            num_layers=1,
            batch_first=True,
            dropout=0,
            bidirectional=False,
        )
        pho_config = deepcopy(config)
        pho_config.num_hidden_layers = 4
        self.pho_model = BertModel(pho_config)

        self.char_images_multifonts = torch.nn.Parameter(torch.rand(21128, 3, 32, 32))
        self.char_images_multifonts.requires_grad = False

        self.resnet = CharResNet(in_channels=3)
        self.resnet_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

        self.gate_net = nn.Linear(4 * config.hidden_size, 3)

        out_config = deepcopy(config)
        out_config.num_hidden_layers = 3
        self.output_block = BertModel(out_config)

        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.vocab_size)

        self.init_weights()

        self.loss_fnt = CrossEntropyLoss(ignore_index=0)

        self.tokenizer = None

    def tie_cls_weight(self):
        self.classifier.weight = self.bert.embeddings.word_embeddings.weight

    def build_glyce_embed(self, vocab_dir, font_path, font_size=32):
        vocab_path = os.path.join(vocab_dir, 'vocab.txt')
        with open(vocab_path, 'r', encoding='utf-8') as f:
            vocab = [s.strip() for s in f]

        font = ImageFont.truetype(font_path, size=font_size)

        char_images = []
        for char in vocab:
            if len(char) != 1 or (not _is_chinese_char(ord(char))):
                char_images.append(np.zeros((font_size, font_size)).astype(np.float32))
                continue
            image = font.getmask(char)
            image = np.asarray(image).astype(np.float32).reshape(image.size[::-1])  # Must be [::-1]

            # Crop
            image = image[:font_size, :font_size]

            # Pad
            if image.size != (font_size, font_size):
                back_image = np.zeros((font_size, font_size)).astype(np.float32)
                offset0 = (font_size - image.shape[0]) // 2
                offset1 = (font_size - image.shape[1]) // 2
                back_image[offset0:offset0 + image.shape[0], offset1:offset1 + image.shape[1]] = image
                image = back_image

            char_images.append(image)
        char_images = np.array(char_images)
        char_images = (char_images - np.mean(char_images)) / np.std(char_images)
        char_images = torch.from_numpy(char_images).reshape(char_images.shape[0], -1)
        assert char_images.shape == (21128, 1024)
        self.char_images.weight.data.copy_(char_images)

    # Add by hengdaxu
    def build_glyce_embed_multifonts(self, vocab_dir, num_fonts, use_traditional_font, font_size=32):
        font_paths = [
            ('simhei.ttf', False),
            ('xiaozhuan.ttf', False),
            ('simhei.ttf', True),
        ]
        font_paths = font_paths[:num_fonts]
        if use_traditional_font:
            font_paths = font_paths[:-1]
            font_paths.append(('simhei.ttf', True))
            self.converter = opencc.OpenCC('s2t.json')

        images_list = []
        for font_path, use_traditional in font_paths:
            images = self.build_glyce_embed_onefont(
                vocab_dir=vocab_dir,
                font_path=font_path,
                font_size=font_size,
                use_traditional=use_traditional,
            )
            images_list.append(images)

        char_images = torch.stack(images_list, dim=1).contiguous()
        self.char_images_multifonts.data.copy_(char_images)

    # Add by hengdaxu
    def build_glyce_embed_onefont(self, vocab_dir, font_path, font_size, use_traditional):
        vocab_path = os.path.join(vocab_dir, 'vocab.txt')
        with open(vocab_path, encoding='utf-8') as f:
            vocab = [s.strip() for s in f.readlines()]
        if use_traditional:
            vocab = [self.converter.convert(c) if len(c) == 1 else c for c in vocab]

        font = ImageFont.truetype(font_path, size=font_size)

        char_images = []
        for char in vocab:
            if len(char) > 1:
                char_images.append(np.zeros((font_size, font_size)).astype(np.float32))
                continue
            image = font.getmask(char)
            image = np.asarray(image).astype(np.float32).reshape(image.size[::-1])  # Must be [::-1]

            # Crop
            image = image[:font_size, :font_size]

            # Pad
            if image.size != (font_size, font_size):
                back_image = np.zeros((font_size, font_size)).astype(np.float32)
                offset0 = (font_size - image.shape[0]) // 2
                offset1 = (font_size - image.shape[1]) // 2
                back_image[offset0:offset0 + image.shape[0], offset1:offset1 + image.shape[1]] = image
                image = back_image

            char_images.append(image)
        char_images = np.array(char_images)
        char_images = (char_images - np.mean(char_images)) / np.std(char_images)
        char_images = torch.from_numpy(char_images).contiguous()
        return char_images

    @staticmethod
    def build_batch(batch, tokenizer):
        src_idx = batch['src_idx'].flatten().tolist()
        chars = tokenizer.convert_ids_to_tokens(src_idx)
        pho_idx, pho_lens = pho2_convertor.convert(chars)
        batch['pho_idx'] = pho_idx
        batch['pho_lens'] = pho_lens
        return batch

    def forward(self,
                input_ids=None,
                pho_idx=None,
                pho_lens=None,
                attention_mask=None,
                labels=None,
                **kwargs):
        input_shape = input_ids.size()

        bert_hiddens = self.bert(input_ids, attention_mask=attention_mask)[0]

        pho_embeddings = self.pho_embeddings(pho_idx)

        if torch.is_tensor(pho_lens):
            pho_lens = pho_lens.tolist()
        pho_embeddings = torch.nn.utils.rnn.pack_padded_sequence(
            input=pho_embeddings,
            lengths=pho_lens,
            batch_first=True,
            enforce_sorted=False,
        )
        _, pho_hiddens = self.pho_gru(pho_embeddings)
        pho_hiddens = pho_hiddens.squeeze(0).reshape(input_shape[0], input_shape[1], -1).contiguous()
        pho_hiddens = self.pho_model(inputs_embeds=pho_hiddens, attention_mask=attention_mask)[0]

        src_idxs = input_ids.view(-1)

        if self.config.num_fonts == 1:
            images = self.char_images(src_idxs).reshape(src_idxs.shape[0], 1, 32, 32).contiguous()
        else:
            images = self.char_images_multifonts.index_select(dim=0, index=src_idxs)

        res_hiddens = self.resnet(images)
        res_hiddens = res_hiddens.reshape(input_shape[0], input_shape[1], -1).contiguous()
        res_hiddens = self.resnet_layernorm(res_hiddens)

        bert_hiddens_mean = (bert_hiddens * attention_mask.to(torch.float).unsqueeze(2)).sum(dim=1) / attention_mask.to(
            torch.float).sum(dim=1, keepdim=True)
        bert_hiddens_mean = bert_hiddens_mean.unsqueeze(1).expand(-1, bert_hiddens.size(1), -1)

        concated_outputs = torch.cat((bert_hiddens, pho_hiddens, res_hiddens, bert_hiddens_mean), dim=-1)
        gated_values = self.gate_net(concated_outputs)
        # B * S * 3
        g0 = torch.sigmoid(gated_values[:, :, 0].unsqueeze(-1))
        g1 = torch.sigmoid(gated_values[:, :, 1].unsqueeze(-1))
        g2 = torch.sigmoid(gated_values[:, :, 2].unsqueeze(-1))

        hiddens = g0 * bert_hiddens + g1 * pho_hiddens + g2 * res_hiddens

        outputs = self.output_block(inputs_embeds=hiddens,
                                    position_ids=torch.zeros(input_ids.size(), dtype=torch.long,
                                                             device=input_ids.device),
                                    attention_mask=attention_mask)

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        outputs = MaskedLMOutput(
            logits=logits,
            hidden_states=outputs.last_hidden_state,
        )

        if labels is not None:
            # Only keep active parts of the loss
            labels[labels == 101] = 0
            labels[labels == 102] = 0
            loss = self.loss_fnt(logits.view(-1, logits.size(-1)), labels.view(-1))
            outputs.loss = loss

        return outputs

    def set_tokenizer(self, tokenizer):
        self.tokenizer = tokenizer

    def predict(self, sentences):
        if self.tokenizer is None:
            raise RuntimeError("Please init tokenizer by `set_tokenizer(tokenizer)` before predict.")

        str_flag = False
        if type(sentences) == str:
            sentences = [sentences]
            str_flag = True

        inputs = self.tokenizer(sentences, padding=True, return_tensors="pt")
        outputs = self.forward(**inputs).logits

        ids_list = outputs.argmax(-1)

        preds = []
        for i, ids in enumerate(ids_list):
            ids = ids[inputs['attention_mask'][i].bool()]
            pred_tokens = self.tokenizer.convert_ids_to_tokens(ids)
            pred_tokens = [t if not t.startswith('##') else t[2:] for t in pred_tokens]
            pred_tokens = [t if t != self.tokenizer.unk_token else '×' for t in pred_tokens]

            offsets = inputs[i].offsets
            src_tokens = list(sentences[i])
            for (start, end), pred_token in zip(offsets, pred_tokens):
                if end - start <= 0:
                    continue

                if (end - start) != len(pred_token):
                    continue

                if pred_token == '×':
                    continue

                if (end - start) == 1 and not _is_chinese_char(ord(src_tokens[start])):
                    continue

                src_tokens[start:end] = pred_token

            pred = ''.join(src_tokens)
            preds.append(pred)

        if str_flag:
            return preds[0]

        return preds