--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en - ja --- # Uploaded model - **Developed by:** ikedachin - **License:** apache-2.0 - **Finetuned from model :** llm-jp/llm-jp-3-13b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) ## 学習データ 使用したSupervised fien-tune用dataset:下記からランダムに20000データを抽出 DeL-TaiseiOzaki/Tengentoppa-sft-v1.0 🌾 ランダムに20000データを取り出して学習 SFTに用いた継続事前学習モデル ikedachin/llm-jp-3-13b-october-news-e1-all-3-5 ### 実行コード ```:Python # import libraries import re import json import torch from peft import PeftModel from tqdm import tqdm from unsloth import FastLanguageModel # define base model_id and peft model_id model_id = "llm-jp/llm-jp-3-13b" adapter_id = "ikedachin/llm-jp-3-13b-october-news-e1-all-3-5-sft-ozaki-30000" dtype = None load_in_4bit # down load base model model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_id, dtype=dtype, load_in_4bit=load_in_4bit, trust_remote_code=True, ) # adapt peft model model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN) # prepare dataset elyza-tasks-100-TV_0.jsonl datasets_elyza = [] with open('./elyza-tasks-100-TV_0.jsonl', 'r') as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets_elyza.append(json.loads(item)) item = "" # change mode for inference FastLanguageModel.for_inference(model) # inferrence results = [] for dt in tqdm(datasets): input = dt["input"] prompt = f"""### 指示\n{input}\n### 回答\n""" inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) # create result file as jsonl type json_file_id = re.sub(".*/", adapter_id) with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n') ```