update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- table_detection_light
|
7 |
+
model-index:
|
8 |
+
- name: DeTr-TableDetection-5000-images
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# DeTr-TableDetection-5000-images
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the table_detection_light dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.3184
|
20 |
+
- Mean Iou: 0.0234
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 5e-05
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 16
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 20
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou |
|
50 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
51 |
+
| 0.741 | 1.0 | 313 | 0.7054 | 0.0259 |
|
52 |
+
| 0.5559 | 2.0 | 626 | 0.5159 | 0.0231 |
|
53 |
+
| 0.4213 | 3.0 | 939 | 0.4154 | 0.0254 |
|
54 |
+
| 0.4374 | 4.0 | 1252 | 0.4072 | 0.0249 |
|
55 |
+
| 0.3884 | 5.0 | 1565 | 0.4454 | 0.0232 |
|
56 |
+
| 0.4057 | 6.0 | 1878 | 0.4251 | 0.0249 |
|
57 |
+
| 0.3511 | 7.0 | 2191 | 0.3882 | 0.0239 |
|
58 |
+
| 0.3463 | 8.0 | 2504 | 0.3766 | 0.0243 |
|
59 |
+
| 0.3346 | 9.0 | 2817 | 0.4142 | 0.0236 |
|
60 |
+
| 0.3183 | 10.0 | 3130 | 0.3804 | 0.0242 |
|
61 |
+
| 0.3049 | 11.0 | 3443 | 0.3642 | 0.0244 |
|
62 |
+
| 0.2942 | 12.0 | 3756 | 0.3541 | 0.0253 |
|
63 |
+
| 0.2836 | 13.0 | 4069 | 0.3359 | 0.0252 |
|
64 |
+
| 0.2738 | 14.0 | 4382 | 0.3338 | 0.0254 |
|
65 |
+
| 0.2629 | 15.0 | 4695 | 0.3318 | 0.0267 |
|
66 |
+
| 0.2591 | 16.0 | 5008 | 0.3311 | 0.0224 |
|
67 |
+
| 0.2457 | 17.0 | 5321 | 0.3317 | 0.0234 |
|
68 |
+
| 0.2406 | 18.0 | 5634 | 0.3219 | 0.0238 |
|
69 |
+
| 0.2383 | 19.0 | 5947 | 0.3143 | 0.0238 |
|
70 |
+
| 0.2229 | 20.0 | 6260 | 0.3184 | 0.0234 |
|
71 |
+
|
72 |
+
|
73 |
+
### Framework versions
|
74 |
+
|
75 |
+
- Transformers 4.26.0
|
76 |
+
- Pytorch 1.13.1+cu117
|
77 |
+
- Datasets 2.5.1
|
78 |
+
- Tokenizers 0.13.2
|