File size: 3,889 Bytes
be4bbad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
base_model: unsloth/mistral-7b-v0.3-bnb-4bit
library_name: peft
license: apache-2.0
tags:
- unsloth
- generated_from_trainer
model-index:
- name: Mistral-7B-v0.3_metamath_ortho
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Mistral-7B-v0.3_metamath_ortho

This model is a fine-tuned version of [unsloth/mistral-7b-v0.3-bnb-4bit](https://huggingface.co/unsloth/mistral-7b-v0.3-bnb-4bit) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.6676

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.7827        | 0.0211 | 13   | 1.0186          |
| 7.6813        | 0.0421 | 26   | 7.3723          |
| 7.0799        | 0.0632 | 39   | 6.6456          |
| 6.356         | 0.0842 | 52   | 6.2633          |
| 6.2517        | 0.1053 | 65   | 6.2857          |
| 6.2899        | 0.1264 | 78   | 6.2679          |
| 6.285         | 0.1474 | 91   | 6.2945          |
| 6.3073        | 0.1685 | 104  | 6.3867          |
| 6.2797        | 0.1896 | 117  | 6.2024          |
| 6.083         | 0.2106 | 130  | 5.9188          |
| 5.8629        | 0.2317 | 143  | 5.7044          |
| 5.6092        | 0.2527 | 156  | 5.3934          |
| 5.3102        | 0.2738 | 169  | 5.2099          |
| 5.2155        | 0.2949 | 182  | 5.1111          |
| 5.0531        | 0.3159 | 195  | 4.9263          |
| 4.8718        | 0.3370 | 208  | 4.8186          |
| 4.7175        | 0.3580 | 221  | 4.6831          |
| 4.641         | 0.3791 | 234  | 4.6348          |
| 4.5275        | 0.4002 | 247  | 4.5482          |
| 4.4863        | 0.4212 | 260  | 4.4328          |
| 4.4633        | 0.4423 | 273  | 4.3950          |
| 4.4026        | 0.4633 | 286  | 4.3332          |
| 4.3761        | 0.4844 | 299  | 4.2790          |
| 4.2027        | 0.5055 | 312  | 4.1886          |
| 4.1631        | 0.5265 | 325  | 4.1493          |
| 4.0923        | 0.5476 | 338  | 4.1405          |
| 4.1048        | 0.5687 | 351  | 4.0457          |
| 4.0592        | 0.5897 | 364  | 3.9616          |
| 4.0107        | 0.6108 | 377  | 3.9935          |
| 4.021         | 0.6318 | 390  | 3.8987          |
| 3.8899        | 0.6529 | 403  | 3.9228          |
| 3.8158        | 0.6740 | 416  | 3.8781          |
| 3.9124        | 0.6950 | 429  | 3.8955          |
| 3.8687        | 0.7161 | 442  | 3.8612          |
| 3.824         | 0.7371 | 455  | 3.8042          |
| 3.7742        | 0.7582 | 468  | 3.7946          |
| 3.7309        | 0.7793 | 481  | 3.7436          |
| 3.7528        | 0.8003 | 494  | 3.7428          |
| 3.7297        | 0.8214 | 507  | 3.7325          |
| 3.6943        | 0.8424 | 520  | 3.7126          |
| 3.6788        | 0.8635 | 533  | 3.7202          |
| 3.6632        | 0.8846 | 546  | 3.6981          |
| 3.7316        | 0.9056 | 559  | 3.6925          |
| 3.6737        | 0.9267 | 572  | 3.6602          |
| 3.6142        | 0.9478 | 585  | 3.6731          |
| 3.6347        | 0.9688 | 598  | 3.6691          |
| 3.6248        | 0.9899 | 611  | 3.6676          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1