File size: 3,862 Bytes
be4bbad
5538c91
be4bbad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5538c91
be4bbad
5538c91
be4bbad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5538c91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be4bbad
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
base_model: unsloth/mistral-7b-v0.3
library_name: peft
license: apache-2.0
tags:
- unsloth
- generated_from_trainer
model-index:
- name: Mistral-7B-v0.3_metamath_ortho
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Mistral-7B-v0.3_metamath_ortho

This model is a fine-tuned version of [unsloth/mistral-7b-v0.3](https://huggingface.co/unsloth/mistral-7b-v0.3) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.7040

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.7777        | 0.0211 | 13   | 0.8341          |
| 7.0293        | 0.0421 | 26   | 6.8513          |
| 6.701         | 0.0632 | 39   | 6.3677          |
| 6.2243        | 0.0842 | 52   | 6.0330          |
| 5.8724        | 0.1053 | 65   | 5.7326          |
| 5.6516        | 0.1264 | 78   | 5.5358          |
| 5.4706        | 0.1474 | 91   | 5.4924          |
| 5.4721        | 0.1685 | 104  | 5.4835          |
| 5.3039        | 0.1896 | 117  | 5.2730          |
| 5.2205        | 0.2106 | 130  | 5.3434          |
| 5.2713        | 0.2317 | 143  | 5.1822          |
| 5.3149        | 0.2527 | 156  | 5.1724          |
| 5.0644        | 0.2738 | 169  | 4.9613          |
| 4.9846        | 0.2949 | 182  | 4.9757          |
| 5.0517        | 0.3159 | 195  | 4.9266          |
| 4.865         | 0.3370 | 208  | 4.8010          |
| 4.7282        | 0.3580 | 221  | 4.6863          |
| 4.7043        | 0.3791 | 234  | 4.8179          |
| 4.625         | 0.4002 | 247  | 4.7745          |
| 4.6588        | 0.4212 | 260  | 4.5501          |
| 4.5945        | 0.4423 | 273  | 4.6777          |
| 4.5486        | 0.4633 | 286  | 4.4474          |
| 4.5306        | 0.4844 | 299  | 4.2966          |
| 4.2913        | 0.5055 | 312  | 4.3590          |
| 4.2849        | 0.5265 | 325  | 4.2581          |
| 4.2128        | 0.5476 | 338  | 4.2430          |
| 4.2097        | 0.5687 | 351  | 4.1542          |
| 4.1464        | 0.5897 | 364  | 4.0493          |
| 4.0945        | 0.6108 | 377  | 4.1035          |
| 4.1179        | 0.6318 | 390  | 4.0137          |
| 3.985         | 0.6529 | 403  | 4.0483          |
| 3.8947        | 0.6740 | 416  | 3.9081          |
| 3.9839        | 0.6950 | 429  | 3.9723          |
| 3.9361        | 0.7161 | 442  | 3.9275          |
| 3.8458        | 0.7371 | 455  | 3.8235          |
| 3.8545        | 0.7582 | 468  | 3.8504          |
| 3.7774        | 0.7793 | 481  | 3.8078          |
| 3.8065        | 0.8003 | 494  | 3.8017          |
| 3.7724        | 0.8214 | 507  | 3.7487          |
| 3.7569        | 0.8424 | 520  | 3.7663          |
| 3.742         | 0.8635 | 533  | 3.7698          |
| 3.7114        | 0.8846 | 546  | 3.7603          |
| 3.7752        | 0.9056 | 559  | 3.7105          |
| 3.6945        | 0.9267 | 572  | 3.7041          |
| 3.6581        | 0.9478 | 585  | 3.7017          |
| 3.6615        | 0.9688 | 598  | 3.7050          |
| 3.6688        | 0.9899 | 611  | 3.7040          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1