File size: 3,908 Bytes
c891669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
base_model: unsloth/mistral-7b-v0.3
library_name: peft
license: apache-2.0
tags:
- unsloth
- generated_from_trainer
model-index:
- name: Mistral-7B-v0.3_pct_default
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Mistral-7B-v0.3_pct_default

This model is a fine-tuned version of [unsloth/mistral-7b-v0.3](https://huggingface.co/unsloth/mistral-7b-v0.3) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 6.8426

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.2574        | 0.0206 | 8    | 8.1127          |
| 12.0384       | 0.0413 | 16   | 8.6074          |
| 8.2422        | 0.0619 | 24   | 8.1200          |
| 7.6855        | 0.0825 | 32   | 7.6217          |
| 7.676         | 0.1032 | 40   | 7.6368          |
| 7.636         | 0.1238 | 48   | 7.5536          |
| 7.5027        | 0.1444 | 56   | 7.4853          |
| 7.393         | 0.1651 | 64   | 7.3495          |
| 7.4878        | 0.1857 | 72   | 7.3829          |
| 7.4503        | 0.2063 | 80   | 7.2955          |
| 7.4405        | 0.2270 | 88   | 7.2849          |
| 7.3525        | 0.2476 | 96   | 7.2125          |
| 7.3442        | 0.2682 | 104  | 7.2516          |
| 7.292         | 0.2888 | 112  | 7.2813          |
| 7.2845        | 0.3095 | 120  | 7.2147          |
| 7.3309        | 0.3301 | 128  | 7.1448          |
| 7.165         | 0.3507 | 136  | 7.1427          |
| 7.1362        | 0.3714 | 144  | 7.0595          |
| 7.1956        | 0.3920 | 152  | 7.2333          |
| 7.1047        | 0.4126 | 160  | 7.0622          |
| 7.1466        | 0.4333 | 168  | 7.0642          |
| 7.0243        | 0.4539 | 176  | 7.0605          |
| 7.1814        | 0.4745 | 184  | 7.0207          |
| 7.1579        | 0.4952 | 192  | 7.0191          |
| 6.9988        | 0.5158 | 200  | 7.0403          |
| 7.0306        | 0.5364 | 208  | 6.9673          |
| 7.2037        | 0.5571 | 216  | 6.9458          |
| 7.0632        | 0.5777 | 224  | 6.8305          |
| 6.8916        | 0.5983 | 232  | 6.8760          |
| 6.929         | 0.6190 | 240  | 6.8567          |
| 6.927         | 0.6396 | 248  | 6.9211          |
| 7.0534        | 0.6602 | 256  | 6.9313          |
| 6.8807        | 0.6809 | 264  | 7.0025          |
| 7.0768        | 0.7015 | 272  | 6.8808          |
| 7.042         | 0.7221 | 280  | 6.9264          |
| 7.027         | 0.7427 | 288  | 6.8833          |
| 6.9575        | 0.7634 | 296  | 6.8925          |
| 6.9509        | 0.7840 | 304  | 6.8662          |
| 7.0361        | 0.8046 | 312  | 6.9178          |
| 7.0065        | 0.8253 | 320  | 6.8844          |
| 7.0016        | 0.8459 | 328  | 6.8536          |
| 7.0667        | 0.8665 | 336  | 6.9255          |
| 6.9046        | 0.8872 | 344  | 6.8849          |
| 6.8891        | 0.9078 | 352  | 6.8567          |
| 7.0118        | 0.9284 | 360  | 6.8438          |
| 6.901         | 0.9491 | 368  | 6.8571          |
| 7.0057        | 0.9697 | 376  | 6.8454          |
| 6.9415        | 0.9903 | 384  | 6.8426          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1