nel-mgenre-multilingual / generic_nel.py
emanuelaboros's picture
Update generic_nel.py
9f3ce07 verified
from transformers import Pipeline
import nltk
import requests
import torch
nltk.download("averaged_perceptron_tagger")
nltk.download("averaged_perceptron_tagger_eng")
NEL_MODEL = "nel-mgenre-multilingual"
def get_wikipedia_page_props(input_str: str):
"""
Retrieves the QID for a given Wikipedia page name from the specified language Wikipedia.
If the request fails, it falls back to using the OpenRefine Wikidata API.
Args:
input_str (str): The input string in the format "page_name >> language".
Returns:
str: The QID or "NIL" if the QID is not found.
"""
# print(f"Input string: {input_str}")
if ">>" not in input_str:
page_name = input_str
language = "en"
print(
f"<< was not found in {input_str} so we are checking with these values: Page name: {page_name}, Language: {language}"
)
else:
# Preprocess the input string
try:
page_name, language = input_str.split(">>")
page_name = page_name.strip()
language = language.strip()
except:
page_name = input_str
language = "en"
print(
f"<< was not found in {input_str} so we are checking with these values: Page name: {page_name}, Language: {language}"
)
wikipedia_url = f"https://{language}.wikipedia.org/w/api.php"
wikipedia_params = {
"action": "query",
"prop": "pageprops",
"format": "json",
"titles": page_name,
}
qid = "NIL"
try:
# Attempt to fetch from Wikipedia API
response = requests.get(wikipedia_url, params=wikipedia_params)
response.raise_for_status()
data = response.json()
if "pages" in data["query"]:
page_id = list(data["query"]["pages"].keys())[0]
if "pageprops" in data["query"]["pages"][page_id]:
page_props = data["query"]["pages"][page_id]["pageprops"]
if "wikibase_item" in page_props:
# print(page_props["wikibase_item"], language)
return page_props["wikibase_item"], language
else:
return qid, language
else:
return qid, language
else:
return qid, language
except Exception as e:
return qid, language
def get_wikipedia_title(qid, language="en"):
url = f"https://www.wikidata.org/w/api.php"
params = {
"action": "wbgetentities",
"format": "json",
"ids": qid,
"props": "sitelinks/urls",
"sitefilter": f"{language}wiki",
}
response = requests.get(url, params=params)
try:
response.raise_for_status() # Raise an HTTPError if the response was not 2xx
data = response.json()
except requests.exceptions.RequestException as e:
print(f"HTTP error: {e}")
return "NIL", "None"
except ValueError as e: # Catch JSON decode errors
print(f"Invalid JSON response: {response.text}")
return "NIL", "None"
try:
title = data["entities"][qid]["sitelinks"][f"{language}wiki"]["title"]
url = data["entities"][qid]["sitelinks"][f"{language}wiki"]["url"]
return title, url
except KeyError:
return "NIL", "None"
class NelPipeline(Pipeline):
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "text" in kwargs:
preprocess_kwargs["text"] = kwargs["text"]
return preprocess_kwargs, {}, {}
def preprocess(self, text, **kwargs):
# Extract the entity between [START] and [END]
start_token = "[START]"
end_token = "[END]"
if start_token in text and end_token in text:
start_idx = text.index(start_token) + len(start_token)
end_idx = text.index(end_token)
enclosed_entity = text[start_idx:end_idx].strip()
lOffset = start_idx # left offset (start of the entity)
rOffset = end_idx # right offset (end of the entity)
else:
enclosed_entity = None
lOffset = None
rOffset = None
# Generate predictions using the model
outputs = self.model.generate(
**self.tokenizer([text], return_tensors="pt").to(self.device),
num_beams=1,
num_return_sequences=1,
max_new_tokens=30,
return_dict_in_generate=True,
output_scores=True,
)
# Decode the predictions into readable text
wikipedia_prediction = self.tokenizer.batch_decode(
outputs.sequences, skip_special_tokens=True
)[0]
# Process the scores for each token
transition_scores = self.model.compute_transition_scores(
outputs.sequences, outputs.scores, normalize_logits=True
)
log_prob_sum = sum(transition_scores[0])
# Calculate the probability for the entire sequence by exponentiating the sum of log probabilities
sequence_confidence = torch.exp(log_prob_sum)
percentage = sequence_confidence.cpu().numpy() * 100.0
# print(wikipedia_prediction, enclosed_entity, lOffset, rOffset, percentage)
# Return the predictions along with the extracted entity, lOffset, and rOffset
return wikipedia_prediction, enclosed_entity, lOffset, rOffset, percentage
def _forward(self, inputs):
return inputs
def postprocess(self, outputs, **kwargs):
"""
Postprocess the outputs of the model
:param outputs:
:param kwargs:
:return:
"""
wikipedia_prediction, enclosed_entity, lOffset, rOffset, percentage = outputs
qid, language = get_wikipedia_page_props(wikipedia_prediction)
title, url = get_wikipedia_title(qid, language=language)
percentage = round(percentage, 2)
results = [
{
# "id": f"{lOffset}:{rOffset}:{enclosed_entity}:{NEL_MODEL}",
"surface": enclosed_entity,
"wkd_id": qid,
"wkpedia_pagename": title,
"wkpedia_url": url,
"type": "UNK",
"confidence_nel": percentage,
"lOffset": lOffset,
"rOffset": rOffset,
}
]
return results